IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v91y2015icp507-516.html
   My bibliography  Save this article

Experimental investigation of torrefaction of two agricultural wastes of different composition using RSM (response surface methodology)

Author

Listed:
  • Nam, Hyungseok
  • Capareda, Sergio

Abstract

A torrefaction study using RS (rice straw) and CS (cotton stalk) was carried out to better understand the effects of the process conditions and the different compositions of biomass on the changes in the properties of the products based on the RSM (response surface methodology). The comparison of energy yield, energy densification, and main torrefaction parameters were evaluated through a complete analysis of products. The optimal conditions for the highest energy yield were obtained at the least severe conditions of 210 °C for 20min. The weight reduction of raw biomass after torrefaction was 13–48% for RS and 9–50% for CS, and the energy recovery for the solid product was over 77% for RS and 68% for CS. The highest heating value of the torrefied product was determined to be 28.6 MJ/kg. When it comes to energy densification, RS showed a higher degree of densification than CS. The maximum densified values were obtained as 1.48 for RS and 1.37 for CS, which can contribute to alleviating transportation and storage difficulties. Based on the statistical analysis, torrefaction for RS was mainly affected by temperature, while the main condition for CS torrefaction was the interaction of temperature and time.

Suggested Citation

  • Nam, Hyungseok & Capareda, Sergio, 2015. "Experimental investigation of torrefaction of two agricultural wastes of different composition using RSM (response surface methodology)," Energy, Elsevier, vol. 91(C), pages 507-516.
  • Handle: RePEc:eee:energy:v:91:y:2015:i:c:p:507-516
    DOI: 10.1016/j.energy.2015.08.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215011408
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.08.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saxena, R.C. & Adhikari, D.K. & Goyal, H.B., 2009. "Biomass-based energy fuel through biochemical routes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 167-178, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Barskov, Stan & Zappi, Mark & Buchireddy, Prashanth & Dufreche, Stephen & Guillory, John & Gang, Daniel & Hernandez, Rafael & Bajpai, Rakesh & Baudier, Jeff & Cooper, Robbyn & Sharp, Richard, 2019. "Torrefaction of biomass: A review of production methods for biocoal from cultured and waste lignocellulosic feedstocks," Renewable Energy, Elsevier, vol. 142(C), pages 624-642.
    3. Lucio Zaccariello & Maria Laura Mastellone, 2023. "Fuel Gas Production from the Co-Gasification of Coal, Plastic Waste, and Wood in a Fluidized Bed Reactor: Effect of Gasifying Agent and Bed Material," Sustainability, MDPI, vol. 15(9), pages 1-19, May.
    4. Nam, Hyungseok & Kim, Jung Hwan & Kim, Hana & Kim, Min Jae & Jeon, Sang-Goo & Jin, Gyoung-Tae & Won, Yooseob & Hwang, Byung Wook & Lee, Seung-Yong & Baek, Jeom-In & Lee, Doyeon & Seo, Myung Won & Ryu,, 2021. "CO2 methanation in a bench-scale bubbling fluidized bed reactor using Ni-based catalyst and its exothermic heat transfer analysis," Energy, Elsevier, vol. 214(C).
    5. Ma, Jiao & Feng, Shuo & Zhang, Zhikun & Wang, Zhuozhi & Kong, Wenwen & Yuan, Peng & Shen, Boxiong & Mu, Lan, 2022. "Effect of torrefaction pretreatment on the combustion characteristics of the biodried products derived from municipal organic wastes," Energy, Elsevier, vol. 239(PD).
    6. Choi, Yujin & Wang, Shuang & Yoon, Young Min & Jang, Jae Jun & Kim, Daewook & Ryu, Ho-Jung & Lee, Doyeon & Won, Yooseob & Nam, Hyungseok & Hwang, Byungwook, 2024. "Sustainable strategy for converting plastic waste into energy over pyrolysis: A comparative study of fluidized-bed and fixed-bed reactors," Energy, Elsevier, vol. 286(C).
    7. Montagnaro, Fabio & Zaccariello, Lucio, 2023. "Performance assessment of a demonstration-scale biomass gasification power plant using material and energy flow analyses," Energy, Elsevier, vol. 284(C).
    8. Nam, Hyungseok & Maglinao, Amado L. & Capareda, Sergio C. & Rodriguez-Alejandro, David Aaron, 2016. "Enriched-air fluidized bed gasification using bench and pilot scale reactors of dairy manure with sand bedding based on response surface methods," Energy, Elsevier, vol. 95(C), pages 187-199.
    9. Xing Yang & Hailong Wang & Peter James Strong & Song Xu & Shujuan Liu & Kouping Lu & Kuichuan Sheng & Jia Guo & Lei Che & Lizhi He & Yong Sik Ok & Guodong Yuan & Ying Shen & Xin Chen, 2017. "Thermal Properties of Biochars Derived from Waste Biomass Generated by Agricultural and Forestry Sectors," Energies, MDPI, vol. 10(4), pages 1-12, April.
    10. Kim, Seok Jun & Park, Sunyong & Oh, Kwang Cheol & Ju, Young Min & Cho, La hoon & Kim, Dae Hyun, 2021. "Development of surface torrefaction process to utilize agro-byproducts as an energy source," Energy, Elsevier, vol. 233(C).
    11. Ong, Hwai Chyuan & Yu, Kai Ling & Chen, Wei-Hsin & Pillejera, Ma Katreena & Bi, Xiaotao & Tran, Khanh-Quang & Pétrissans, Anelie & Pétrissans, Mathieu, 2021. "Variation of lignocellulosic biomass structure from torrefaction: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    12. Abdulyekeen, Kabir Abogunde & Umar, Ahmad Abulfathi & Patah, Muhamad Fazly Abdul & Daud, Wan Mohd Ashri Wan, 2021. "Torrefaction of biomass: Production of enhanced solid biofuel from municipal solid waste and other types of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    13. Kartal, Furkan & Özveren, Uğur, 2022. "Prediction of torrefied biomass properties from raw biomass," Renewable Energy, Elsevier, vol. 182(C), pages 578-591.
    14. Singh, Rishikesh Kumar & Chakraborty, Jyoti Prasad & Sarkar, Arnab, 2020. "Optimizing the torrefaction of pigeon pea stalk (cajanus cajan) using response surface methodology (RSM) and characterization of solid, liquid and gaseous products," Renewable Energy, Elsevier, vol. 155(C), pages 677-690.
    15. A. Silveira, Edgar & Santanna Chaves, Bruno & Macedo, Lucélia & Ghesti, Grace F. & Evaristo, Rafael B.W. & Cruz Lamas, Giulia & Luz, Sandra M. & Protásio, Thiago de Paula & Rousset, Patrick, 2023. "A hybrid optimization approach towards energy recovery from torrefied waste blends," Renewable Energy, Elsevier, vol. 212(C), pages 151-165.
    16. Ahmad, Razi & Mohd Ishak, Mohd Azlan & Kasim, Nur Nasulhah & Ismail, Khudzir, 2019. "Properties and thermal analysis of upgraded palm kernel shell and Mukah Balingian coal," Energy, Elsevier, vol. 167(C), pages 538-547.
    17. Sukiran, Mohamad Azri & Wan Daud, Wan Mohd Ashri & Abnisa, Faisal & Nasrin, Abu Bakar & Abdul Aziz, Astimar & Loh, Soh Kheang, 2021. "A comprehensive study on torrefaction of empty fruit bunches: Characterization of solid, liquid and gas products," Energy, Elsevier, vol. 230(C).
    18. Singh, Rishikesh Kumar & Sarkar, Arnab & Chakraborty, Jyoti Prasad, 2020. "Effect of torrefaction on the physicochemical properties of eucalyptus derived biofuels: estimation of kinetic parameters and optimizing torrefaction using response surface methodology (RSM)," Energy, Elsevier, vol. 198(C).
    19. Nam, Hyungseok & Capareda, Sergio C. & Ashwath, Nanjappa & Kongkasawan, Jinjuta, 2015. "Experimental investigation of pyrolysis of rice straw using bench-scale auger, batch and fluidized bed reactors," Energy, Elsevier, vol. 93(P2), pages 2384-2394.
    20. Kongkasawan, Jinjuta & Nam, Hyungseok & Capareda, Sergio C., 2016. "Jatropha waste meal as an alternative energy source via pressurized pyrolysis: A study on temperature effects," Energy, Elsevier, vol. 113(C), pages 631-642.
    21. Kutlu, O. & Kocar, G., 2020. "Improving stability of torrefied biomass at cooling stage," Renewable Energy, Elsevier, vol. 147(P1), pages 814-823.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Jabri, Hareb & Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammad & Thaher, Mehmoud Ibrahim & Hoekman, Kent & Hawari, Alaa H., 2022. "A comparison of bio-crude oil production from five marine microalgae – Using life cycle analysis," Energy, Elsevier, vol. 251(C).
    2. Nawaz, Ahmad & Razzak, Shaikh Abdur, 2024. "Co-pyrolysis of biomass and different plastic waste to reduce hazardous waste and subsequent production of energy products: A review on advancement, synergies, and future prospects," Renewable Energy, Elsevier, vol. 224(C).
    3. Qi, Jianhui & Zhao, Jianli & Xu, Yang & Wang, Yongjia & Han, Kuihua, 2018. "Segmented heating carbonization of biomass: Yields, property and estimation of heating value of chars," Energy, Elsevier, vol. 144(C), pages 301-311.
    4. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    5. Pätäri, Satu & Puumalainen, Kaisu & Jantunen, Ari & Sandstrüm, Jaana, 2011. "The interface of the energy and forest sectors--Potential players in the bioenergy business," International Journal of Production Economics, Elsevier, vol. 131(1), pages 322-332, May.
    6. Goh, Chun Sheng & Lee, Keat Teong, 2010. "A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 842-848, February.
    7. M. N. Uddin & Kuaanan Techato & Juntakan Taweekun & Md Mofijur Rahman & M. G. Rasul & T. M. I. Mahlia & S. M. Ashrafur, 2018. "An Overview of Recent Developments in Biomass Pyrolysis Technologies," Energies, MDPI, vol. 11(11), pages 1-24, November.
    8. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.
    9. Aliyu, Abubakar Sadiq & Dada, Joseph O. & Adam, Ibrahim Khalil, 2015. "Current status and future prospects of renewable energy in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 336-346.
    10. Lee, Jechan & Kim, Soosan & You, Siming & Park, Young-Kwon, 2023. "Bioenergy generation from thermochemical conversion of lignocellulosic biomass-based integrated renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    11. Lim, Jeng Shiun & Abdul Manan, Zainuddin & Wan Alwi, Sharifah Rafidah & Hashim, Haslenda, 2012. "A review on utilisation of biomass from rice industry as a source of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3084-3094.
    12. Jafary, Tahereh & Daud, Wan Ramli Wan & Ghasemi, Mostafa & Kim, Byung Hong & Md Jahim, Jamaliah & Ismail, Manal & Lim, Swee Su, 2015. "Biocathode in microbial electrolysis cell; present status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 23-33.
    13. Weishu Liu & Mengdi Gu & Guangyuan Hu & Chao Li & Huchang Liao & Li Tang & Philip Shapira, 2014. "Profile of developments in biomass-based bioenergy research: a 20-year perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(2), pages 507-521, May.
    14. Lazaroiu, Gheorghe & Pop, Elena & Negreanu, Gabriel & Pisa, Ionel & Mihaescu, Lucian & Bondrea, Andreya & Berbece, Viorel, 2017. "Biomass combustion with hydrogen injection for energy applications," Energy, Elsevier, vol. 127(C), pages 351-357.
    15. Xuan, Jin & Leung, Michael K.H. & Leung, Dennis Y.C. & Ni, Meng, 2009. "A review of biomass-derived fuel processors for fuel cell systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1301-1313, August.
    16. Yi Zhang & Mingting Kou & Kaihua Chen & Jiancheng Guan & Yuchen Li, 2016. "Modelling the Basic Research Competitiveness Index (BR-CI) with an application to the biomass energy field," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(3), pages 1221-1241, September.
    17. Wen, Wen & Zhang, Qin, 2015. "A design of straw acquisition mode for China's straw power plant based on supply chain coordination," Renewable Energy, Elsevier, vol. 76(C), pages 369-374.
    18. Marcin Kopiczko & Jaroslaw Jaworski, 2021. "Characteristics of the Parameters of Lithium Iron Phosphate Energy Storage in the Context of their Usefulness in the Management of Distribution Grid," European Research Studies Journal, European Research Studies Journal, vol. 0(3B), pages 817-826.
    19. Naveed, Muhammad Hamza & Khan, Muhammad Nouman Aslam & Mukarram, Muhammad & Naqvi, Salman Raza & Abdullah, Abdullah & Haq, Zeeshan Ul & Ullah, Hafeez & Mohamadi, Hamad Al, 2024. "Cellulosic biomass fermentation for biofuel production: Review of artificial intelligence approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    20. Teresa Enes & José Aranha & Teresa Fonseca & Domingos Lopes & Ana Alves & José Lousada, 2019. "Thermal Properties of Residual Agroforestry Biomass of Northern Portugal," Energies, MDPI, vol. 12(8), pages 1-13, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:91:y:2015:i:c:p:507-516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.