IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v189y2024ipbs1364032123007645.html
   My bibliography  Save this article

Cellulosic biomass fermentation for biofuel production: Review of artificial intelligence approaches

Author

Listed:
  • Naveed, Muhammad Hamza
  • Khan, Muhammad Nouman Aslam
  • Mukarram, Muhammad
  • Naqvi, Salman Raza
  • Abdullah, Abdullah
  • Haq, Zeeshan Ul
  • Ullah, Hafeez
  • Mohamadi, Hamad Al

Abstract

Scarcity in fossil fuel reserves and their environmental impacts has forced the world towards the production of clean and environment-friendly fuels called biofuels. This review focuses on the importance of different machine learning models and optimization techniques to simulate and optimize process conditions, yield and parameters in the fermentation of cellulosic biomass from fifty recent studies. The superiority of ML models, especially ANN dominance in 70 % of studies with highest coefficient of regression over conventional techniques in the production of bioethanol and biohydrogen is comprehensively reviewed. Research gaps and studies directed toward the usage of most optimum ML models in future are directed after the sensitivity analysis with 5 % variation that suggest the stability of ML models. It is intended to spur further investigation into the development and use of ML models combined with optimization methods and CFD in the fermentation process to produce bioethanol and biohydrogen.

Suggested Citation

  • Naveed, Muhammad Hamza & Khan, Muhammad Nouman Aslam & Mukarram, Muhammad & Naqvi, Salman Raza & Abdullah, Abdullah & Haq, Zeeshan Ul & Ullah, Hafeez & Mohamadi, Hamad Al, 2024. "Cellulosic biomass fermentation for biofuel production: Review of artificial intelligence approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
  • Handle: RePEc:eee:rensus:v:189:y:2024:i:pb:s1364032123007645
    DOI: 10.1016/j.rser.2023.113906
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123007645
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113906?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mutlu, Ali Yener & Yucel, Ozgun, 2018. "An artificial intelligence based approach to predicting syngas composition for downdraft biomass gasification," Energy, Elsevier, vol. 165(PA), pages 895-901.
    2. Sakiewicz, P. & Piotrowski, K. & Ober, J. & Karwot, J., 2020. "Innovative artificial neural network approach for integrated biogas – wastewater treatment system modelling: Effect of plant operating parameters on process intensification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    3. Milano, Jassinnee & Ong, Hwai Chyuan & Masjuki, H.H. & Chong, W.T. & Lam, Man Kee & Loh, Ping Kwan & Vellayan, Viknes, 2016. "Microalgae biofuels as an alternative to fossil fuel for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 180-197.
    4. Małgorzata Smuga-Kogut & Tomasz Kogut & Roksana Markiewicz & Adam Słowik, 2021. "Use of Machine Learning Methods for Predicting Amount of Bioethanol Obtained from Lignocellulosic Biomass with the Use of Ionic Liquids for Pretreatment," Energies, MDPI, vol. 14(1), pages 1-16, January.
    5. Singh, Rawel & Krishna, Bhavya B. & Mishra, Garima & Kumar, Jitendra & Bhaskar, Thallada, 2016. "Strategies for selection of thermo-chemical processes for the valorisation of biomass," Renewable Energy, Elsevier, vol. 98(C), pages 226-237.
    6. Evan Stephens & Ian Ross & Jan H. Mussgnug & Liam Wagner & Michael A. Borowitzka & Clemens Posten & Olaf Kruse & Ben Hankamer, 2010. "Future prospects of microalgal biofuel production systems," Energy Economics and Management Group Working Papers 7-2010, School of Economics, University of Queensland, Australia.
    7. Edilson León Moreno Cárdenas & Arley David Zapata-Zapata & Daehwan Kim, 2020. "Modeling Dark Fermentation of Coffee Mucilage Wastes for Hydrogen Production: Artificial Neural Network Model vs. Fuzzy Logic Model," Energies, MDPI, vol. 13(7), pages 1-13, April.
    8. Andrew Gordon Wilson & David A. Knowles & Zoubin Ghahramani, 2011. "Gaussian Process Regression Networks," Papers 1110.4411, arXiv.org.
    9. SK Safdar Hossain & Bamidele Victor Ayodele & Syed Sadiq Ali & Chin Kui Cheng & Siti Indati Mustapa, 2022. "Comparative Analysis of Support Vector Machine Regression and Gaussian Process Regression in Modeling Hydrogen Production from Waste Effluent," Sustainability, MDPI, vol. 14(12), pages 1-14, June.
    10. Amir Mosavi & Mohsen Salimi & Sina Faizollahzadeh Ardabili & Timon Rabczuk & Shahaboddin Shamshirband & Annamaria R. Varkonyi-Koczy, 2019. "State of the Art of Machine Learning Models in Energy Systems, a Systematic Review," Energies, MDPI, vol. 12(7), pages 1-42, April.
    11. Saxena, R.C. & Adhikari, D.K. & Goyal, H.B., 2009. "Biomass-based energy fuel through biochemical routes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 167-178, January.
    12. Ge, Yuntian & Li, Lin, 2018. "System-level energy consumption modeling and optimization for cellulosic biofuel production," Applied Energy, Elsevier, vol. 226(C), pages 935-946.
    13. Leila Ezzatzadegan & Rubiyah Yusof & Noor Azian Morad & Parvaneh Shabanzadeh & Nur Syuhana Muda & Tohid N. Borhani, 2021. "Experimental and Artificial Intelligence Modelling Study of Oil Palm Trunk Sap Fermentation," Energies, MDPI, vol. 14(8), pages 1-22, April.
    14. Grahovac, Jovana & Jokić, Aleksandar & Dodić, Jelena & Vučurović, Damjan & Dodić, Siniša, 2016. "Modelling and prediction of bioethanol production from intermediates and byproduct of sugar beet processing using neural networks," Renewable Energy, Elsevier, vol. 85(C), pages 953-958.
    15. Marco Dorigo & Thomas Stützle, 2019. "Ant Colony Optimization: Overview and Recent Advances," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, edition 3, chapter 0, pages 311-351, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pomeroy, Brett & Grilc, Miha & Likozar, Blaž, 2022. "Artificial neural networks for bio-based chemical production or biorefining: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    2. Ascher, Simon & Watson, Ian & You, Siming, 2022. "Machine learning methods for modelling the gasification and pyrolysis of biomass and waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    3. Niaze, Ambereen A. & Sahu, Rohit & Sunkara, Mahendra K. & Upadhyayula, Sreedevi, 2023. "Model construction and optimization for raising the concentration of industrial bioethanol production by using a data-driven ANN model," Renewable Energy, Elsevier, vol. 216(C).
    4. de Jesus, Sérgio S. & Ferreira, Gabriela F. & Moreira, Larissa S. & Filho, Rubens Maciel, 2020. "Biodiesel production from microalgae by direct transesterification using green solvents," Renewable Energy, Elsevier, vol. 160(C), pages 1283-1294.
    5. Kalpesh K. Sharma & Holger Schuhmann & Peer M. Schenk, 2012. "High Lipid Induction in Microalgae for Biodiesel Production," Energies, MDPI, vol. 5(5), pages 1-22, May.
    6. Al-Jabri, Hareb & Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammad & Thaher, Mehmoud Ibrahim & Hoekman, Kent & Hawari, Alaa H., 2022. "A comparison of bio-crude oil production from five marine microalgae – Using life cycle analysis," Energy, Elsevier, vol. 251(C).
    7. Narisetty, Vivek & Narisetty, Sudheera & Jacob, Samuel & Kumar, Deepak & Leeke, Gary A. & Chandel, Anuj Kumar & Singh, Vijai & Srivastava, Vimal Chandra & Kumar, Vinod, 2022. "Biological production and recovery of 2,3-butanediol using arabinose from sugar beet pulp by Enterobacter ludwigii," Renewable Energy, Elsevier, vol. 191(C), pages 394-404.
    8. Nawaz, Ahmad & Razzak, Shaikh Abdur, 2024. "Co-pyrolysis of biomass and different plastic waste to reduce hazardous waste and subsequent production of energy products: A review on advancement, synergies, and future prospects," Renewable Energy, Elsevier, vol. 224(C).
    9. Qi, Jianhui & Zhao, Jianli & Xu, Yang & Wang, Yongjia & Han, Kuihua, 2018. "Segmented heating carbonization of biomass: Yields, property and estimation of heating value of chars," Energy, Elsevier, vol. 144(C), pages 301-311.
    10. Elhambakhsh, Abbas & Van Duc Long, Nguyen & Lamichhane, Pradeep & Hessel, Volker, 2023. "Recent progress and future directions in plasma-assisted biomass conversion to hydrogen," Renewable Energy, Elsevier, vol. 218(C).
    11. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    12. Alvaro Furlani Bastos & Surya Santoso, 2021. "Optimization Techniques for Mining Power Quality Data and Processing Unbalanced Datasets in Machine Learning Applications," Energies, MDPI, vol. 14(2), pages 1-21, January.
    13. Navas-Anguita, Zaira & García-Gusano, Diego & Iribarren, Diego, 2019. "A review of techno-economic data for road transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 11-26.
    14. Yoon, Kwangsuk & Lee, Sang Soo & Ok, Yong Sik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Enhancement of syngas for H2 production via catalytic pyrolysis of orange peel using CO2 and bauxite residue," Applied Energy, Elsevier, vol. 254(C).
    15. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    16. Pätäri, Satu & Puumalainen, Kaisu & Jantunen, Ari & Sandstrüm, Jaana, 2011. "The interface of the energy and forest sectors--Potential players in the bioenergy business," International Journal of Production Economics, Elsevier, vol. 131(1), pages 322-332, May.
    17. Alessandro Bosisio & Matteo Moncecchi & Andrea Morotti & Marco Merlo, 2021. "Machine Learning and GIS Approach for Electrical Load Assessment to Increase Distribution Networks Resilience," Energies, MDPI, vol. 14(14), pages 1-23, July.
    18. Goh, Chun Sheng & Lee, Keat Teong, 2010. "A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 842-848, February.
    19. M. N. Uddin & Kuaanan Techato & Juntakan Taweekun & Md Mofijur Rahman & M. G. Rasul & T. M. I. Mahlia & S. M. Ashrafur, 2018. "An Overview of Recent Developments in Biomass Pyrolysis Technologies," Energies, MDPI, vol. 11(11), pages 1-24, November.
    20. Farzin, Farzad & Moghaddam, Shabnam Sadri & Ehteshami, Majid, 2024. "Auto-tuning data-driven model for biogas yield prediction from anaerobic digestion of sewage sludge at the south-tehran wastewater treatment plant: Feature selection and hyperparameter population-base," Renewable Energy, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:189:y:2024:i:pb:s1364032123007645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.