IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v91y2015icp274-282.html
   My bibliography  Save this article

Superior catalytic effect of nanocrystalline big-cube Zr2Ni metastable phase for improving the hydrogen sorption/desorption kinetics and cyclability of MgH2 powders

Author

Listed:
  • El-Eskandarany, M. Sherif
  • Al-Matrouk, H.
  • Shaban, Ehab
  • Al-Duweesh, Ahmed

Abstract

Reactive ball milling was employed to synthesize nanocrystalline MgH2 powders using a high-energy ball milling of pure Mg powders under 50 bar of a hydrogen gas atmosphere. The end-product of MgH2 powders obtained after 200 h of a continuous reactive ball milling time composed of fine grains (∼7 nm in diameter) of γ and β phases. A new catalytic agent of big-cube Zr2Ni nanocrystalline phase, which is proposed in the present study for improving the hydrogenation/dehydrogenation kinetics of MgH2 powders, was obtained upon high-energy ball milling of tetragonal-Zr2Ni powders for 150 h. The as-ball milled Zr2Ni powders consisted of ultrafine grains with an average grain size of 6 nm in diameter. The as-prepared MgH2 powders were mechanically doped with 10 wt% of big-cube Zr2Ni powders for 50 h, using high-energy ball mill under a hydrogen gas atmosphere for 50 h. The powders obtained after 50 h of milling enjoyed homogeneous morphology and uniform composition close to the starting nominal composition. Moreover, this binary nanocomposite system possessed superior hydrogenation/dehydrogenation kinetics at 250 °C, as suggested by the short time required to absorb and desorb 5.1 wt% H2 within 100 s and 613 s, respectively. At this temperature, the synthesized nanocomposite powders possessed excellent absorption/desorption cyclability of 2546 complete cycles within 1250 h. However, a minor degradation (∼0.5 wt% H2) in the hydrogen storage capacity was observed between 300 h and 2546 h of the cycle-life-time. This slight degradation took place due to the grain growth came off in the Mg/Zr2Ni grains.

Suggested Citation

  • El-Eskandarany, M. Sherif & Al-Matrouk, H. & Shaban, Ehab & Al-Duweesh, Ahmed, 2015. "Superior catalytic effect of nanocrystalline big-cube Zr2Ni metastable phase for improving the hydrogen sorption/desorption kinetics and cyclability of MgH2 powders," Energy, Elsevier, vol. 91(C), pages 274-282.
  • Handle: RePEc:eee:energy:v:91:y:2015:i:c:p:274-282
    DOI: 10.1016/j.energy.2015.07.135
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215011305
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.07.135?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan, Mei-Qiang & Liu, Shu-sheng & Zhang, Yao & Zhang, Jian & Sun, Li-Xian & Xu, Fen, 2010. "Superior hydrogen storage properties of MgH2–10 wt.% TiC composite," Energy, Elsevier, vol. 35(8), pages 3417-3421.
    2. Ismail, M., 2015. "Effect of LaCl3 addition on the hydrogen storage properties of MgH2," Energy, Elsevier, vol. 79(C), pages 177-182.
    3. Principi, G. & Agresti, F. & Maddalena, A. & Lo Russo, S., 2009. "The problem of solid state hydrogen storage," Energy, Elsevier, vol. 34(12), pages 2087-2091.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. El-Eskandarany, M. Sherif & Shaban, Ehab & Alsairafi, Ammar A., 2016. "Synergistic dosing effect of TiC/FeCr nanocatalysts on the hydrogenation/dehydrogenation kinetics of nanocrystalline MgH2 powders," Energy, Elsevier, vol. 104(C), pages 158-170.
    2. Zhang, J. & He, L. & Yao, Y. & Zhou, X.J. & Yu, L.P. & Lu, X.Z. & Zhou, D.W., 2020. "Catalytic effect and mechanism of NiCu solid solutions on hydrogen storage properties of MgH2," Renewable Energy, Elsevier, vol. 154(C), pages 1229-1239.
    3. M. Sherif El-Eskandarany & Maryam Saeed & Eissa Al-Nasrallah & Fahad Al-Ajmi & Mohammad Banyan, 2019. "Effect of LaNi 3 Amorphous Alloy Nanopowders on the Performance and Hydrogen Storage Properties of MgH 2," Energies, MDPI, vol. 12(6), pages 1-15, March.
    4. Dou, Binlin & Zhang, Hua & Cui, Guomin & He, Mingxing & Ruan, Chenjie & Wang, Zilong & Chen, Haisheng & Xu, Yujie & Jiang, Bo & Wu, Chunfei, 2019. "Hydrogen sorption and desorption behaviors of Mg-Ni-Cu doped carbon nanotubes at high temperature," Energy, Elsevier, vol. 167(C), pages 1097-1106.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Wei & Cheng, Ying & Han, Da & Han, Shumin, 2015. "The hydrogen storage properties of MgH2–Fe3S4 composites," Energy, Elsevier, vol. 93(P1), pages 625-630.
    2. El-Eskandarany, M. Sherif & Shaban, Ehab & Alsairafi, Ammar A., 2016. "Synergistic dosing effect of TiC/FeCr nanocatalysts on the hydrogenation/dehydrogenation kinetics of nanocrystalline MgH2 powders," Energy, Elsevier, vol. 104(C), pages 158-170.
    3. Kou, Huaqin & Luo, Wenhua & Huang, Zhiyong & Sang, Ge & Meng, Daqiao & Zhang, Guanghui & Chen, Changan & Luo, Deli & Hu, Changwen, 2015. "Fabrication and experimental validation of a full-scale depleted uranium bed with thin double-layered annulus configuration for hydrogen isotopes recovery and delivery," Energy, Elsevier, vol. 90(P1), pages 588-594.
    4. Ma, Li-Juan & Wang, Jianfeng & Han, Min & Jia, Jianfeng & Wu, Hai-Shun & Zhang, Xiang, 2019. "Adsorption of multiple H2 molecules on the complex TiC6H6: An unusual combination of chemisorption and physisorption," Energy, Elsevier, vol. 171(C), pages 315-325.
    5. Kalamse, Vijayanand & Wadnerkar, Nitin & Chaudhari, Ajay, 2013. "Multi-functionalized naphthalene complexes for hydrogen storage," Energy, Elsevier, vol. 49(C), pages 469-474.
    6. Ismail, M., 2015. "Effect of LaCl3 addition on the hydrogen storage properties of MgH2," Energy, Elsevier, vol. 79(C), pages 177-182.
    7. Ding, Xiangqian & Zhu, Yunfeng & Wei, Lingjun & Li, Ying & Li, Liquan, 2013. "Synergistic hydrogen desorption of HCS MgH2 + LiAlH4 composite," Energy, Elsevier, vol. 55(C), pages 933-938.
    8. Dou, Binlin & Zhang, Hua & Cui, Guomin & He, Mingxing & Ruan, Chenjie & Wang, Zilong & Chen, Haisheng & Xu, Yujie & Jiang, Bo & Wu, Chunfei, 2019. "Hydrogen sorption and desorption behaviors of Mg-Ni-Cu doped carbon nanotubes at high temperature," Energy, Elsevier, vol. 167(C), pages 1097-1106.
    9. Pedicini, R. & Schiavo, B. & Rispoli, P. & Saccà, A. & Carbone, A. & Gatto, I. & Passalacqua, E., 2014. "Progress in polymeric material for hydrogen storage application in middle conditions," Energy, Elsevier, vol. 64(C), pages 607-614.
    10. Shen, Xiaochen & Wang, Qing & Wu, Qingquan & Guo, Siqi & Zhang, Zhengyan & Sun, Ziyang & Liu, Baishu & Wang, Zhibin & Zhao, Bin & Ding, Weiping, 2015. "CoB supported on Ag-activated TiO2 as a highly active catalyst for hydrolysis of alkaline NaBH4 solution," Energy, Elsevier, vol. 90(P1), pages 464-474.
    11. Öz, Çisem & Coşkuner Filiz, Bilge & Kantürk Figen, Aysel, 2017. "The effect of vinegar–acetic acid solution on the hydrogen generation performance of mechanochemically modified Magnesium (Mg) granules," Energy, Elsevier, vol. 127(C), pages 328-334.
    12. Sun, Qian & Zou, Meishuai & Guo, Xiaoyan & Yang, Rongjie & Huang, Haitao & Huang, Peng & He, Xiangdong, 2015. "A study of hydrogen generation by reaction of an activated Mg–CoCl2 (magnesium–cobalt chloride) composite with pure water for portable applications," Energy, Elsevier, vol. 79(C), pages 310-314.
    13. Fan, Mei-Qiang & Liu, Shu-sheng & Zhang, Yao & Zhang, Jian & Sun, Li-Xian & Xu, Fen, 2010. "Superior hydrogen storage properties of MgH2–10 wt.% TiC composite," Energy, Elsevier, vol. 35(8), pages 3417-3421.
    14. Chung, Kyong-Hwan, 2010. "High-pressure hydrogen storage on microporous zeolites with varying pore properties," Energy, Elsevier, vol. 35(5), pages 2235-2241.
    15. Meryem Sena Akkus, 2022. "Investigation of Hydrogen Production Performance Using Nanoporous NiCr and NiV Alloys in KBH 4 Hydrolysis," Energies, MDPI, vol. 15(24), pages 1-15, December.
    16. Weng, Baicheng & Wu, Zhu & Li, Zhilin & Yang, Hui, 2012. "Hydrogen generation from hydrolysis of MNH2BH3 and NH3BH3/MH (M=Li, Na) for fuel cells based unmanned submarine vehicles application," Energy, Elsevier, vol. 38(1), pages 205-211.
    17. Valero-Pedraza, María José & Martín-Cortés, Alexandra & Navarrete, Alexander & Bermejo, María Dolores & Martín, Ángel, 2015. "Kinetics of hydrogen release from dissolutions of ammonia borane in different ionic liquids," Energy, Elsevier, vol. 91(C), pages 742-750.
    18. Jayalakshmi, S. & Vasantha, V.S. & Fleury, E. & Gupta, M., 2012. "Characteristics of Ni–Nb-based metallic amorphous alloys for hydrogen-related energy applications," Applied Energy, Elsevier, vol. 90(1), pages 94-99.
    19. Xiao, Jinsheng & Tong, Liang & Bénard, Pierre & Chahine, Richard, 2020. "Thermodynamic analysis for hydriding-dehydriding cycle of metal hydride system," Energy, Elsevier, vol. 191(C).
    20. Yang, Weijuan & Zhang, Tianyou & Liu, Jianzhong & Wang, Zhihua & Zhou, Junhu & Cen, Kefa, 2015. "Experimental researches on hydrogen generation by aluminum with adding lithium at high temperature," Energy, Elsevier, vol. 93(P1), pages 451-457.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:91:y:2015:i:c:p:274-282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.