IDEAS home Printed from https://ideas.repec.org/p/ind/igiwpp/2007-004.html
   My bibliography  Save this paper

Hydrogen energy for Indian transport sector: A Well-to-wheel techno-economic and environmental feasibility analysis

Author

Listed:
  • P. Balachandra

    (Indian Institute of Science)

  • B. Sudhakara Reddy

    (Indira Gandhi Institute of Development Research)

Abstract

With the alarming rate of growth in vehicle population and travel demand, the energy consumption has increased significantly contributing to the rise of GHG emissions. Therefore, the development of a viable environmentally benign technology/fuel, which minimises both global and local environmental impacts, is the need of the hour. There are four interconnected reasons for propagating a shift towards alternative fuels/technologies: (i) Energy Supply: world oil reserves are rapidly diminishing, (ii) Environment: local pollution from vehicles is creating an atmosphere that is increasingly damaging public health and environment, (iii) Economic competitiveness: the cost of producing oil and regulating the by-products of oil consumption continues to increase, and (iv) Energy security: the military and political costs of maintaining energy security in international markets are becoming untenable. Hydrogen energy has been demonstrated as a viable alternative automotive fuel in three technological modes: internal combustion engines connected mechanically to conventional vehicles; fuel cells that produce electricity to power electric vehicles; and hybrids that involve combinations of engines or fuel cells with electrical storage systems, such as batteries The present study provides a well-to-wheel analysis of the economic and environmental implications of technologies to deliver the hydrogen energy to the vehicles. The main objectives of the study are: (i) prioritization of technologies of hydrogen production, transportation, storage and refueling, (ii) economic analysis of prioritized technology alternatives to estimate the delivered cost of hydrogen at the end-use point, and (iii) estimating the environmental impacts. To achieve the desired objectives, various quantitative life-cycle-cost analyses have been carried out for numerous pathways (i.e. technologies and processes) for hydrogen production, storage, transportation/distribution and dispensing. The total cost implications are arrived at by combining the costs of hydrogen (at end-use point) and the estimated demand for hydrogen for transport. The environmental benefits (potential to abate GHG emissions) of alternative hydrogen energy technology pathways have been worked out by using the standard emission factors. Finally, the GHG emission levels of hydrogen supply pathways are compared with those of diesel and petrol pathways. The application of this systematic methodology will simulate a realistic decision-making process.

Suggested Citation

  • P. Balachandra & B. Sudhakara Reddy, 2007. "Hydrogen energy for Indian transport sector: A Well-to-wheel techno-economic and environmental feasibility analysis," Indira Gandhi Institute of Development Research, Mumbai Working Papers 2007-004, Indira Gandhi Institute of Development Research, Mumbai, India.
  • Handle: RePEc:ind:igiwpp:2007-004
    as

    Download full text from publisher

    File URL: http://www.igidr.ac.in/pdf/publication/WP-2007-004.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Richa Kothari & D. Buddhi & R.L. Sawhney, 2004. "Sources and technology for hydrogen production: a review," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 21(1/2), pages 154-178.
    2. Solomon, Barry D. & Banerjee, Abhijit, 2006. "A global survey of hydrogen energy research, development and policy," Energy Policy, Elsevier, vol. 34(7), pages 781-792, May.
    3. Solomon, Barry D. & Banerjee, Abhijit, 2006. "Erratum to "A global survey of hydrogen energy research, development and policy": [Energy Policy 34 (2006) 781-792]," Energy Policy, Elsevier, vol. 34(11), pages 1318-1208, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. van Ruijven, Bas & Hari, Lakshmikanth & van Vuuren, Detlef P. & de Vries, Bert, 2008. "The potential role of hydrogen energy in India and Western Europe," Energy Policy, Elsevier, vol. 36(5), pages 1649-1665, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arho Suominen, 2014. "Phases of growth in a green tech research network: a bibliometric evaluation of fuel cell technology from 1991 to 2010," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(1), pages 51-72, July.
    2. Dougherty, William & Kartha, Sivan & Rajan, Chella & Lazarus, Michael & Bailie, Alison & Runkle, Benjamin & Fencl, Amanda, 2009. "Greenhouse gas reduction benefits and costs of a large-scale transition to hydrogen in the USA," Energy Policy, Elsevier, vol. 37(1), pages 56-67, January.
    3. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan, 2010. "Alternative fuel buses currently in use in China: Life-cycle fossil energy use, GHG emissions and policy recommendations," Energy Policy, Elsevier, vol. 38(1), pages 406-418, January.
    4. Shashi Sharma & Shivani Agarwal & Ankur Jain, 2021. "Significance of Hydrogen as Economic and Environmentally Friendly Fuel," Energies, MDPI, vol. 14(21), pages 1-28, November.
    5. Chun, Dongphil & Hong, Sungjun & Chung, Yanghon & Woo, Chungwon & Seo, Hangyeol, 2016. "Influencing factors on hydrogen energy R&D projects: An ex-post performance evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1252-1258.
    6. Xenias, Dimitrios & Whitmarsh, Lorraine, 2013. "Dimensions and determinants of expert and public attitudes to sustainable transport policies and technologies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 48(C), pages 75-85.
    7. Hwang, Jenn Jiang, 2012. "Review on development and demonstration of hydrogen fuel cell scooters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3803-3815.
    8. Li, Jun, 2011. "Decoupling urban transport from GHG emissions in Indian cities--A critical review and perspectives," Energy Policy, Elsevier, vol. 39(6), pages 3503-3514, June.
    9. van Ruijven, Bas & Hari, Lakshmikanth & van Vuuren, Detlef P. & de Vries, Bert, 2008. "The potential role of hydrogen energy in India and Western Europe," Energy Policy, Elsevier, vol. 36(5), pages 1649-1665, May.
    10. Ainhoa Serna & Aitor Soroa & Rodrigo Agerri, 2021. "Applying Deep Learning Techniques for Sentiment Analysis to Assess Sustainable Transport," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    11. Gilbert, Brett Anitra, 2012. "Creative destruction: Identifying its geographic origins," Research Policy, Elsevier, vol. 41(4), pages 734-742.
    12. Contreras, Alfonso & Posso, Fausto & Guervos, Esther, 2010. "Modelling and simulation of the utilization of a PEM fuel cell in the rural sector of Venezuela," Applied Energy, Elsevier, vol. 87(4), pages 1376-1385, April.
    13. Zhou, Ying & Wang, Lizhi & McCalley, James D., 2011. "Designing effective and efficient incentive policies for renewable energy in generation expansion planning," Applied Energy, Elsevier, vol. 88(6), pages 2201-2209, June.
    14. Kilinc, Dilek & Sahin, Omer, 2020. "High volume hydrogen evolution from KBH4 hydrolysis with palladium complex catalyst," Renewable Energy, Elsevier, vol. 161(C), pages 257-264.
    15. Roberto Fazioli & Francesca Pantaleone, 2021. "Macroeconomic Factors Influencing Public Policy Strategies for Blue and Green Hydrogen," Energies, MDPI, vol. 14(23), pages 1-18, November.
    16. Contreras, A. & Posso, F., 2011. "Technical and financial study of the development in Venezuela of the hydrogen energy system," Renewable Energy, Elsevier, vol. 36(11), pages 3114-3123.
    17. Bento, Nuno, 2010. "Is carbon lock-in blocking investments in the hydrogen economy? A survey of actors' strategies," Energy Policy, Elsevier, vol. 38(11), pages 7189-7199, November.
    18. Pudukudy, Manoj & Yaakob, Zahira & Mohammad, Masita & Narayanan, Binitha & Sopian, Kamaruzzaman, 2014. "Renewable hydrogen economy in Asia – Opportunities and challenges: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 743-757.
    19. Ahlgren, S. & Baky, A. & Bernesson, S. & Nordberg, Å. & Norén, O. & Hansson, P.-A., 2009. "Tractive power in organic farming based on fuel cell technology - Energy balance and environmental load," Agricultural Systems, Elsevier, vol. 102(1-3), pages 67-76, October.
    20. Sovacool, Benjamin K. & Brossmann, Brent, 2010. "Symbolic convergence and the hydrogen economy," Energy Policy, Elsevier, vol. 38(4), pages 1999-2012, April.

    More about this item

    JEL classification:

    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ind:igiwpp:2007-004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Shamprasad M. Pujar (email available below). General contact details of provider: https://edirc.repec.org/data/igidrin.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.