IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v149y2018icp779-791.html
   My bibliography  Save this article

Decentralized optimal multi-energy flow of large-scale integrated energy systems in a carbon trading market

Author

Listed:
  • Qu, Kaiping
  • Yu, Tao
  • Huang, Linni
  • Yang, Bo
  • Zhang, Xiaoshun

Abstract

This paper proposes a novel decentralized optimal multi-energy flow (OMEF) of large-scale integrated energy systems (IES) in a carbon trading market, to fully exploit economic and environmental advantages of the system considering difficulties of information collection from subareas. The decentralized OMEF is solved by three decentralized optimization algorithms, including auxiliary problem principle (APP), block coordinates down (BCD), and approximate Newton directions (AND). Moreover, a dynamic parameter adjustment is developed for APP and BCD to ensure convergence. So that a cooperative optimization among subareas can be achieved through utilizing only the local information and the boundary information. Finally, case studies of a two-area IES with 8 energy hubs and a three-area IES with 33 energy hubs are carried out to deeply compare the performance of the three decentralized algorithms, together with a thorough analysis about the effect of carbon trading price on the system.

Suggested Citation

  • Qu, Kaiping & Yu, Tao & Huang, Linni & Yang, Bo & Zhang, Xiaoshun, 2018. "Decentralized optimal multi-energy flow of large-scale integrated energy systems in a carbon trading market," Energy, Elsevier, vol. 149(C), pages 779-791.
  • Handle: RePEc:eee:energy:v:149:y:2018:i:c:p:779-791
    DOI: 10.1016/j.energy.2018.02.083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218303116
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.02.083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francisco Nogales & Francisco Prieto & Antonio Conejo, 2003. "A Decomposition Methodology Applied to the Multi-Area Optimal Power Flow Problem," Annals of Operations Research, Springer, vol. 120(1), pages 99-116, April.
    2. Jan Abrell & Hannes Weigt, 2012. "Combining Energy Networks," Networks and Spatial Economics, Springer, vol. 12(3), pages 377-401, September.
    3. Li, Guoqing & Zhang, Rufeng & Jiang, Tao & Chen, Houhe & Bai, Linquan & Cui, Hantao & Li, Xiaojing, 2017. "Optimal dispatch strategy for integrated energy systems with CCHP and wind power," Applied Energy, Elsevier, vol. 192(C), pages 408-419.
    4. C. Beltran & F. J. Heredia, 2002. "Unit Commitment by Augmented Lagrangian Relaxation: Testing Two Decomposition Approaches," Journal of Optimization Theory and Applications, Springer, vol. 112(2), pages 295-314, February.
    5. Taliotis, Constantinos & Taibi, Emanuele & Howells, Mark & Rogner, Holger & Bazilian, Morgan & Welsch, Manuel, 2017. "Renewable energy technology integration for the island of Cyprus: A cost-optimization approach," Energy, Elsevier, vol. 137(C), pages 31-41.
    6. Suleman, F. & Dincer, I. & Agelin-Chaab, M., 2014. "Development of an integrated renewable energy system for multigeneration," Energy, Elsevier, vol. 78(C), pages 196-204.
    7. Fu, Xueqian & Guo, Qinglai & Sun, Hongbin & Zhang, Xiurong & Wang, Li, 2017. "Estimation of the failure probability of an integrated energy system based on the first order reliability method," Energy, Elsevier, vol. 134(C), pages 1068-1078.
    8. Zhu, Y. & Li, Y.P. & Huang, G.H. & Fan, Y.R. & Nie, S., 2015. "A dynamic model to optimize municipal electric power systems by considering carbon emission trading under uncertainty," Energy, Elsevier, vol. 88(C), pages 636-649.
    9. Xia, Yan & Tang, Zhipeng, 2017. "The impacts of emissions accounting methods on an imperfect competitive carbon trading market," Energy, Elsevier, vol. 119(C), pages 67-76.
    10. Jiang, Yibo & Xu, Jian & Sun, Yuanzhang & Wei, Congying & Wang, Jing & Liao, Siyang & Ke, Deping & Li, Xiong & Yang, Jun & Peng, Xiaotao, 2018. "Coordinated operation of gas-electricity integrated distribution system with multi-CCHP and distributed renewable energy sources," Applied Energy, Elsevier, vol. 211(C), pages 237-248.
    11. Gu, Wei & Wang, Jun & Lu, Shuai & Luo, Zhao & Wu, Chenyu, 2017. "Optimal operation for integrated energy system considering thermal inertia of district heating network and buildings," Applied Energy, Elsevier, vol. 199(C), pages 234-246.
    12. Wei, F. & Wu, Q.H. & Jing, Z.X. & Chen, J.J. & Zhou, X.X., 2016. "Optimal unit sizing for small-scale integrated energy systems using multi-objective interval optimization and evidential reasoning approach," Energy, Elsevier, vol. 111(C), pages 933-946.
    13. Zhang, Xiaoshun & Yu, Tao & Yang, Bo & Li, Li, 2016. "Virtual generation tribe based robust collaborative consensus algorithm for dynamic generation command dispatch optimization of smart grid," Energy, Elsevier, vol. 101(C), pages 34-51.
    14. Zhou, Kaile & Yang, Shanlin & Shao, Zhen, 2016. "Energy Internet: The business perspective," Applied Energy, Elsevier, vol. 178(C), pages 212-222.
    15. Hannes Weigt & Jan Abrell, 2012. "Storage and Investments in a Combined Energy Network Model," EcoMod2012 4319, EcoMod.
    16. Li, Guoqing & Zhang, Rufeng & Jiang, Tao & Chen, Houhe & Bai, Linquan & Li, Xiaojing, 2017. "Security-constrained bi-level economic dispatch model for integrated natural gas and electricity systems considering wind power and power-to-gas process," Applied Energy, Elsevier, vol. 194(C), pages 696-704.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Wenxia & Huang, Yuchen & Li, Zhengzhou & Yang, Yue & Yi, Fang, 2020. "Optimal allocation for coupling device in an integrated energy system considering complex uncertainties of demand response," Energy, Elsevier, vol. 198(C).
    2. Wu, Chenyu & Gu, Wei & Xu, Yinliang & Jiang, Ping & Lu, Shuai & Zhao, Bo, 2018. "Bi-level optimization model for integrated energy system considering the thermal comfort of heat customers," Applied Energy, Elsevier, vol. 232(C), pages 607-616.
    3. Lv, Chaoxian & Yu, Hao & Li, Peng & Wang, Chengshan & Xu, Xiandong & Li, Shuquan & Wu, Jianzhong, 2019. "Model predictive control based robust scheduling of community integrated energy system with operational flexibility," Applied Energy, Elsevier, vol. 243(C), pages 250-265.
    4. Juanwei, Chen & Tao, Yu & Yue, Xu & Xiaohua, Cheng & Bo, Yang & Baomin, Zhen, 2019. "Fast analytical method for reliability evaluation of electricity-gas integrated energy system considering dispatch strategies," Applied Energy, Elsevier, vol. 242(C), pages 260-272.
    5. Kong, Xiangyu & Sun, Fangyuan & Huo, Xianxu & Li, Xue & Shen, Yu, 2020. "Hierarchical optimal scheduling method of heat-electricity integrated energy system based on Power Internet of Things," Energy, Elsevier, vol. 210(C).
    6. Wang, Jiangjiang & Huo, Shuojie & Yan, Rujing & Cui, Zhiheng, 2022. "Leveraging heat accumulation of district heating network to improve performances of integrated energy system under source-load uncertainties," Energy, Elsevier, vol. 252(C).
    7. Raheli, Enrica & Wu, Qiuwei & Zhang, Menglin & Wen, Changyun, 2021. "Optimal coordinated operation of integrated natural gas and electric power systems: A review of modeling and solution methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    8. Qiao, Zheng & Guo, Qinglai & Sun, Hongbin & Sheng, Tongtian, 2018. "Multi-time period optimized configuration and scheduling of gas storage in gas-fired power plants," Applied Energy, Elsevier, vol. 226(C), pages 924-934.
    9. Qu, Kaiping & Yu, Tao & Zhang, Xiaoshun & Li, Haofei, 2019. "Homogenized adjacent points method: A novel Pareto optimizer for linearized multi-objective optimal energy flow of integrated electricity and gas system," Applied Energy, Elsevier, vol. 233, pages 338-351.
    10. Vahid Khaligh & Majid Oloomi Buygi & Amjad Anvari-Moghaddam & Josep M. Guerrero, 2018. "A Multi-Attribute Expansion Planning Model for Integrated Gas–Electricity System," Energies, MDPI, vol. 11(10), pages 1-22, September.
    11. Qin, Chao & Yan, Qingyou & He, Gang, 2019. "Integrated energy systems planning with electricity, heat and gas using particle swarm optimization," Energy, Elsevier, vol. 188(C).
    12. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    13. Xu, Bin & Lin, Boqiang, 2018. "Do we really understand the development of China's new energy industry?," Energy Economics, Elsevier, vol. 74(C), pages 733-745.
    14. Egerer, Jonas & Grimm, Veronika & Grübel, Julia & Zöttl, Gregor, 2022. "Long-run market equilibria in coupled energy sectors: A study of uniqueness," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1335-1354.
    15. Jan Abrell and Hannes Weigt, 2016. "Investments in a Combined Energy Network Model: Substitution between Natural Gas and Electricity?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    16. Qu, Kaiping & Shi, Shouyuan & Yu, Tao & Wang, Wenrui, 2019. "A convex decentralized optimization for environmental-economic power and gas system considering diversified emission control," Applied Energy, Elsevier, vol. 240(C), pages 630-645.
    17. Yuan, Yu & Bai, Zhang & Zhou, Shengdong & Zheng, Bo & Hu, Wenxin, 2022. "Potential of applying the thermochemical recuperation in combined cooling, heating and power generation: Flexible demand response characteristics," Applied Energy, Elsevier, vol. 325(C).
    18. Ravnik, J. & Hriberšek, M., 2019. "A method for natural gas forecasting and preliminary allocation based on unique standard natural gas consumption profiles," Energy, Elsevier, vol. 180(C), pages 149-162.
    19. Ahmed I. Omar & Ziad M. Ali & Mostafa Al-Gabalawy & Shady H. E. Abdel Aleem & Mujahed Al-Dhaifallah, 2020. "Multi-Objective Environmental Economic Dispatch of an Electricity System Considering Integrated Natural Gas Units and Variable Renewable Energy Sources," Mathematics, MDPI, vol. 8(7), pages 1-37, July.
    20. Haibing Wang & Chengmin Wang & Weiqing Sun & Muhammad Qasim Khan, 2022. "Energy Pricing and Management for the Integrated Energy Service Provider: A Stochastic Stackelberg Game Approach," Energies, MDPI, vol. 15(19), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:149:y:2018:i:c:p:779-791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.