IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v89y2015icp519-527.html
   My bibliography  Save this article

Transient exergetic efficiency and moisture loss analysis of forced convection drying with and without electrohydrodynamic enhancement

Author

Listed:
  • Bardy, Erik
  • Hamdi, Merouane
  • Havet, Michel
  • Rouaud, Olivier

Abstract

EHD drying (Electrohydrodynamic convective drying) is a novel drying method used to enhance FC drying (forced convection drying) by using a wire-electrode to create an electrostatic field. In this work we studied the dehydration of a food product by means of FC verses EHD drying using three different wire-electrode configurations determined by a prior study. Airflow velocity was set to 1.0–3.0 m/s for FC drying, and 0.3 m/s for EHD drying (applied voltage of 16 kV) at a temperature and relative humidity of 30 °C and 17%, respectively. Drying rates were analyzed as well as the overall and time dependent (transient) exergetic efficiency by means of a specific model. It was found that EHD drying yielded approximately the same drying rate and used exergy as FC drying with airflow velocities of 1.0–2.0 m/s. Both overall and transient exergetic efficiencies were found to be significantly higher for EHD drying compared to FC drying. This was attributed to the lower velocity associate with EHD drying. It was therefore concluded that EHD drying, using the three wire-electrode configurations analyzed in this study, can yield the same drying rate as FC drying, but with significantly lower airflow velocities, and therefore higher exergetic efficiencies.

Suggested Citation

  • Bardy, Erik & Hamdi, Merouane & Havet, Michel & Rouaud, Olivier, 2015. "Transient exergetic efficiency and moisture loss analysis of forced convection drying with and without electrohydrodynamic enhancement," Energy, Elsevier, vol. 89(C), pages 519-527.
  • Handle: RePEc:eee:energy:v:89:y:2015:i:c:p:519-527
    DOI: 10.1016/j.energy.2015.06.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215007288
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.06.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lamnatou, Chr. & Papanicolaou, E. & Belessiotis, V. & Kyriakis, N., 2012. "Experimental investigation and thermodynamic performance analysis of a solar dryer using an evacuated-tube air collector," Applied Energy, Elsevier, vol. 94(C), pages 232-243.
    2. Aviara, Ndubisi A. & Onuoha, Lovelyn N. & Falola, Oluwakemi E. & Igbeka, Joseph C., 2014. "Energy and exergy analyses of native cassava starch drying in a tray dryer," Energy, Elsevier, vol. 73(C), pages 809-817.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dolati, F. & Amanifard, N. & Deylami, H.M., 2018. "Numerical investigation of moisture removal and energy consumption of porous body affected by EHD," Energy, Elsevier, vol. 154(C), pages 352-364.
    2. Iranshahi, Kamran & Martynenko, Alex & Defraeye, Thijs, 2020. "Cutting-down the energy consumption of electrohydrodynamic drying by optimizing mesh collector electrode," Energy, Elsevier, vol. 208(C).
    3. Wasik, Michał & Łapka, Piotr, 2022. "Analysis of seasonal energy consumption during drying of highly saturated moist masonry walls in polish climatic conditions," Energy, Elsevier, vol. 240(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Waseem Amjad & Muhammad Ali Raza & Furqan Asghar & Anjum Munir & Faisal Mahmood & Syed Nabeel Husnain & Muhammad Imtiaz Hussain & Jun-Tae Kim, 2022. "Advanced Exergy Analyses of a Solar Hybrid Food Dehydrator," Energies, MDPI, vol. 15(4), pages 1-15, February.
    2. Maia, Cristiana Brasil & Ferreira, André Guimarães & Cabezas-Gómez, Luben & de Oliveira Castro Silva, Janaína & de Morais Hanriot, Sérgio, 2017. "Thermodynamic analysis of the drying process of bananas in a small-scale solar updraft tower in Brazil," Renewable Energy, Elsevier, vol. 114(PB), pages 1005-1012.
    3. Shafieian, Abdellah & Khiadani, Mehdi & Nosrati, Ataollah, 2018. "A review of latest developments, progress, and applications of heat pipe solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 273-304.
    4. Andrea Aquino & Pietro Poesio, 2021. "Off-Design Exergy Analysis of Convective Drying Using a Two-Phase Multispecies Model," Energies, MDPI, vol. 14(1), pages 1-36, January.
    5. Liu, Zi-Liang & Zielinska, Magdalena & Yang, Xu-Hai & Yu, Xian-Long & Chen, Chang & Wang, Hui & Wang, Jun & Pan, Zhongli & Xiao, Hong-Wei, 2021. "Moisturizing strategy for enhanced convective drying of mushroom slices," Renewable Energy, Elsevier, vol. 172(C), pages 728-739.
    6. Caglayan, Hasan & Caliskan, Hakan, 2017. "Sustainability assessment of heat exchanger units for spray dryers," Energy, Elsevier, vol. 124(C), pages 741-751.
    7. Rabha, D.K. & Muthukumar, P. & Somayaji, C., 2017. "Energy and exergy analyses of the solar drying processes of ghost chilli pepper and ginger," Renewable Energy, Elsevier, vol. 105(C), pages 764-773.
    8. Agathokleous, R. & Barone, G. & Buonomano, A. & Forzano, C. & Kalogirou, S.A. & Palombo, A., 2019. "Building façade integrated solar thermal collectors for air heating: experimentation, modelling and applications," Applied Energy, Elsevier, vol. 239(C), pages 658-679.
    9. Beigi, Mohsen & Tohidi, Mojtaba & Torki-Harchegani, Mehdi, 2017. "Exergetic analysis of deep-bed drying of rough rice in a convective dryer," Energy, Elsevier, vol. 140(P1), pages 374-382.
    10. Aghbashlo, Mortaza & Mobli, Hossein & Rafiee, Shahin & Madadlou, Ashkan, 2013. "A review on exergy analysis of drying processes and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 1-22.
    11. Singh, Sukhmeet & Gill, R.S. & Hans, V.S. & Singh, Manpreet, 2021. "A novel active-mode indirect solar dryer for agricultural products: Experimental evaluation and economic feasibility," Energy, Elsevier, vol. 222(C).
    12. Hamed Karami & Mohammad Kaveh & Iman Golpour & Esmail Khalife & Robert Rusinek & Bohdan Dobrzański & Marek Gancarz, 2021. "Thermodynamic Evaluation of the Forced Convective Hybrid-Solar Dryer during Drying Process of Rosemary ( Rosmarinus officinalis L.) Leaves," Energies, MDPI, vol. 14(18), pages 1-17, September.
    13. Wang, Teng-yue & Zhao, Yao-hua & Diao, Yan-hua & Ren, Ru-yang & Wang, Ze-yu, 2019. "Performance of a new type of solar air collector with transparent-vacuum glass tube based on micro-heat pipe arrays," Energy, Elsevier, vol. 177(C), pages 16-28.
    14. Li, Chengjie & Chen, Yifu & Zhang, Xuefeng & Mozafari, Ghazaleh & Fang, Zhuangdong & Cao, Yankai & Li, Changyou, 2022. "Exergy analysis and optimisation of an industrial-scale circulation counter-flow paddy drying process," Energy, Elsevier, vol. 251(C).
    15. Chopra, K. & Tyagi, V.V. & Pandey, A.K. & Sari, Ahmet, 2018. "Global advancement on experimental and thermal analysis of evacuated tube collector with and without heat pipe systems and possible applications," Applied Energy, Elsevier, vol. 228(C), pages 351-389.
    16. Tohidi, Mojtaba & Sadeghi, Morteza & Torki-Harchegani, Mehdi, 2017. "Energy and quality aspects for fixed deep bed drying of paddy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 519-528.
    17. Silva, Gisele Mol da & Ferreira, André Guimarães & Coutinho, Rogério Morouço & Maia, Cristiana Brasil, 2021. "Energy and exergy analysis of the drying of corn grains," Renewable Energy, Elsevier, vol. 163(C), pages 1942-1950.
    18. Jamal-Abad, Milad Tajik & Saedodin, Seyfolah & Aminy, Mohammad, 2016. "Heat transfer in concentrated solar air-heaters filled with a porous medium with radiation effects: A perturbation solution," Renewable Energy, Elsevier, vol. 91(C), pages 147-154.
    19. Wang, Hui & Torki, Mehdi & Taherian, Arian & Beigi, Mohsen & Xiao, Hong-Mei & Fang, Xiao-Ming, 2023. "Analysis of exergetic performance for a combined ultrasonic power/convective hot air dryer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    20. Baniasadi, Ehsan & Ranjbar, Saeed & Boostanipour, Omid, 2017. "Experimental investigation of the performance of a mixed-mode solar dryer with thermal energy storage," Renewable Energy, Elsevier, vol. 112(C), pages 143-150.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:89:y:2015:i:c:p:519-527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.