Generating H2 from a H2O molecule by catalysis using a small Al6Cu cluster
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2016.03.027
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ruban, Priya & Sellappa, Kanmani, 2014. "Development and performance of bench-scale reactor for the photocatalytic generation of hydrogen," Energy, Elsevier, vol. 73(C), pages 926-932.
- Orhan, Mehmet F. & Babu, Binish S., 2015. "Investigation of an integrated hydrogen production system based on nuclear and renewable energy sources: Comparative evaluation of hydrogen production options with a regenerative fuel cell system," Energy, Elsevier, vol. 88(C), pages 801-820.
- Zhao, Zhongwei & Chen, Xingyu & Hao, Mingming, 2011. "Hydrogen generation by splitting water with Al–Ca alloy," Energy, Elsevier, vol. 36(5), pages 2782-2787.
- Chai, Y.J. & Dong, Y.M. & Meng, H.X. & Jia, Y.Y. & Shen, J. & Huang, Y.M. & Wang, N., 2014. "Hydrogen generation by aluminum corrosion in cobalt (II) chloride and nickel (II) chloride aqueous solution," Energy, Elsevier, vol. 68(C), pages 204-209.
- Zou, Mei-Shuai & Huang, Hai-Tao & Sun, Qian & Guo, Xiao-Yan & Yang, Rong-Jie, 2014. "Effect of the storage environment on hydrogen production via hydrolysis reaction from activated Mg-based materials," Energy, Elsevier, vol. 76(C), pages 673-678.
- Liu, Yongan & Wang, Xinhua & Liu, Haizhen & Dong, Zhaohui & Li, Shouquan & Ge, Hongwei & Yan, Mi, 2014. "Improved hydrogen generation from the hydrolysis of aluminum ball milled with hydride," Energy, Elsevier, vol. 72(C), pages 421-426.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yang, Yu & Kai, Reo & Watanabe, Hiroaki, 2024. "Reaction mechanism and light gas conversion in pyrolysis and oxidation of dimethyl ether (DME): A ReaxFF molecular dynamics study," Energy, Elsevier, vol. 295(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xiao, Fei & Yang, Rongjie & Li, Jianmin, 2019. "Hydrogen generation from hydrolysis of activated aluminum/organic fluoride/bismuth composites with high hydrogen generation rate and good aging resistance in air," Energy, Elsevier, vol. 170(C), pages 159-169.
- Yang, Weijuan & Zhang, Tianyou & Liu, Jianzhong & Wang, Zhihua & Zhou, Junhu & Cen, Kefa, 2015. "Experimental researches on hydrogen generation by aluminum with adding lithium at high temperature," Energy, Elsevier, vol. 93(P1), pages 451-457.
- Gai, Wei-Zhuo & Deng, Zhen-Yan, 2024. "Enhanced hydrogen production from Al-water reaction: Strategies, performances, mechanisms and applications," Renewable Energy, Elsevier, vol. 226(C).
- Xiao, Fei & Guo, Yanpei & Li, Jianmin & Yang, Rongjie, 2018. "Hydrogen generation from hydrolysis of activated aluminum composites in tap water," Energy, Elsevier, vol. 157(C), pages 608-614.
- Zou, Mei-Shuai & Huang, Hai-Tao & Sun, Qian & Guo, Xiao-Yan & Yang, Rong-Jie, 2014. "Effect of the storage environment on hydrogen production via hydrolysis reaction from activated Mg-based materials," Energy, Elsevier, vol. 76(C), pages 673-678.
- Wang, Hongqi & Wang, Zhi & Shi, Zhihao & Gong, Xuzhong & Cao, Jianwei & Wang, Mingyong, 2017. "Facile hydrogen production from Al-water reaction promoted by choline hydroxide," Energy, Elsevier, vol. 131(C), pages 98-105.
- Yang, Weijuan & Zhang, Tianyou & Zhou, Junhu & Shi, Wei & Liu, Jianzhong & Cen, Kefa, 2015. "Experimental study on the effect of low melting point metal additives on hydrogen production in the aluminum–water reaction," Energy, Elsevier, vol. 88(C), pages 537-543.
- Su, Ming & Hu, Haiping & Gan, Jianchang & Ye, Wenhua & Zhang, Wenhua & Wang, Huihu, 2021. "Thermodynamics, kinetics and reaction mechanism of hydrogen production from a novel Al alloy/NaCl/g-C3N4 composite by low temperature hydrolysis," Energy, Elsevier, vol. 218(C).
- Liang, J. & Gao, L.J. & Miao, N.N. & Chai, Y.J. & Wang, N. & Song, X.Q., 2016. "Hydrogen generation by reaction of Al–M (M = Fe,Co,Ni) with water," Energy, Elsevier, vol. 113(C), pages 282-287.
- Sun, Qian & Zou, Meishuai & Guo, Xiaoyan & Yang, Rongjie & Huang, Haitao & Huang, Peng & He, Xiangdong, 2015. "A study of hydrogen generation by reaction of an activated Mg–CoCl2 (magnesium–cobalt chloride) composite with pure water for portable applications," Energy, Elsevier, vol. 79(C), pages 310-314.
- Benim, Ali Cemal & Pfeiffelmann, Björn & Ocłoń, Paweł & Taler, Jan, 2019. "Computational investigation of a lifted hydrogen flame with LES and FGM," Energy, Elsevier, vol. 173(C), pages 1172-1181.
- Sun, Zuo-Yu & Li, Guo-Xiu, 2016. "Propagation characteristics of laminar spherical flames within homogeneous hydrogen-air mixtures," Energy, Elsevier, vol. 116(P1), pages 116-127.
- Chai, Y.J. & Dong, Y.M. & Meng, H.X. & Jia, Y.Y. & Shen, J. & Huang, Y.M. & Wang, N., 2014. "Hydrogen generation by aluminum corrosion in cobalt (II) chloride and nickel (II) chloride aqueous solution," Energy, Elsevier, vol. 68(C), pages 204-209.
- Wenelska, Karolina & Michalkiewicz, Beata & Chen, Xuecheng & Mijowska, Ewa, 2014. "Pd nanoparticles with tunable diameter deposited on carbon nanotubes with enhanced hydrogen storage capacity," Energy, Elsevier, vol. 75(C), pages 549-554.
- Loghmani, Mohammad Hassan & Shojaei, Abdollah Fallah, 2014. "Hydrogen production through hydrolysis of sodium borohydride: Oleic acid stabilized Co–La–Zr–B nanoparticle as a novel catalyst," Energy, Elsevier, vol. 68(C), pages 152-159.
- Wu, Liang & He, Yuehui & Lei, Ting & Nan, Bo & Xu, Nanping & Zou, Jin & Huang, Baiyun & Liu, C.T., 2014. "The stability of hydrogen evolution activity and corrosion behavior of porous Ni3Al–Mo electrode in alkaline solution during long-term electrolysis," Energy, Elsevier, vol. 67(C), pages 19-26.
- Ensafi, Ali A. & Jafari-Asl, Mehdi & Nabiyan, Afshin & Rezaei, Behzad & Dinari, Mohammad, 2016. "Hydrogen storage in hybrid of layered double hydroxides/reduced graphene oxide using spillover mechanism," Energy, Elsevier, vol. 99(C), pages 103-114.
- Liu, Yongan & Wang, Xinhua & Liu, Haizhen & Dong, Zhaohui & Cao, Guozhou & Yan, Mi, 2014. "Hydrogen generation from Mg–LiBH4 hydrolysis improved by AlCl3 addition," Energy, Elsevier, vol. 68(C), pages 548-554.
- AlZahrani, Abdullah A. & Dincer, Ibrahim, 2022. "Assessment of a thin-electrolyte solid oxide cell for hydrogen production," Energy, Elsevier, vol. 243(C).
- Xiao, Peng & Lee, Chia-fon & Wu, Han & Akram, M Zuhaib & Liu, Fushui, 2019. "Impacts of hydrogen-addition on methanol-air laminar burning coupled with pressures variation effects," Energy, Elsevier, vol. 187(C).
More about this item
Keywords
H2 generation; H2O molecule; Al6Cu cluster; Catalysis;All these keywords.
JEL classification:
- H2 - Public Economics - - Taxation, Subsidies, and Revenue
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:106:y:2016:i:c:p:131-136. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.