IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v68y2014icp318-326.html
   My bibliography  Save this article

Using nanofluids in enhancing the performance of a novel two-layer solar pond

Author

Listed:
  • Al-Nimr, Moh'd A.
  • Al-Dafaie, Ameer Mohammed Abbas

Abstract

A novel two-layer nanofluid solar pond is introduced. A mathematical model that describes the thermal performance of the pond has been developed and solved. The upper layer of the pond is made of mineral oil and the lower layer is made of nanofluid. Nanofluid is known to be an excellent solar radiation absorber, and this has been tested and verified using the mathematical model. Using nanofluid will increase the extinction coefficient of the lower layer and consequently will improve the thermal efficiency and the storage capacity of the pond. The effects of other parameters have been also investigated.

Suggested Citation

  • Al-Nimr, Moh'd A. & Al-Dafaie, Ameer Mohammed Abbas, 2014. "Using nanofluids in enhancing the performance of a novel two-layer solar pond," Energy, Elsevier, vol. 68(C), pages 318-326.
  • Handle: RePEc:eee:energy:v:68:y:2014:i:c:p:318-326
    DOI: 10.1016/j.energy.2014.03.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214002850
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.03.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huminic, Gabriela & Huminic, Angel, 2012. "Application of nanofluids in heat exchangers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5625-5638.
    2. Saidur, R. & Leong, K.Y. & Mohammad, H.A., 2011. "A review on applications and challenges of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1646-1668, April.
    3. Saleh, A. & Qudeiri, J.A. & Al-Nimr, M.A., 2011. "Performance investigation of a salt gradient solar pond coupled with desalination facility near the Dead Sea," Energy, Elsevier, vol. 36(2), pages 922-931.
    4. Al-Jamal, K. & Khashan, S., 1996. "Parametric study of a solar pond for Northern Jordan," Energy, Elsevier, vol. 21(10), pages 939-946.
    5. El-Sebaii, A.A. & Ramadan, M.R.I. & Aboul-Enein, S. & Khallaf, A.M., 2011. "History of the solar ponds: A review study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3319-3325, August.
    6. Yousefi, Tooraj & Veysi, Farzad & Shojaeizadeh, Ehsan & Zinadini, Sirus, 2012. "An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors," Renewable Energy, Elsevier, vol. 39(1), pages 293-298.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinping Wang & Jun Wang & Peter D. Lund & Hongxia Zhu, 2019. "Thermal Performance Analysis of a Direct-Heated Recompression Supercritical Carbon Dioxide Brayton Cycle Using Solar Concentrators," Energies, MDPI, vol. 12(22), pages 1-17, November.
    2. Anagnostopoulos, Argyrios & Sebastia-Saez, Daniel & Campbell, Alasdair N. & Arellano-Garcia, Harvey, 2020. "Finite element modelling of the thermal performance of salinity gradient solar ponds," Energy, Elsevier, vol. 203(C).
    3. Manikandan, S. & Rajan, K.S., 2016. "Sand-propylene glycol-water nanofluids for improved solar energy collection," Energy, Elsevier, vol. 113(C), pages 917-929.
    4. González, Daniel & Amigo, José & Suárez, Francisco, 2017. "Membrane distillation: Perspectives for sustainable and improved desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 238-259.
    5. Amirifard, Masoumeh & Kasaeian, Alibakhsh & Amidpour, Majid, 2018. "Integration of a solar pond with a latent heat storage system," Renewable Energy, Elsevier, vol. 125(C), pages 682-693.
    6. Rashidi, S. & Bovand, M. & Abolfazli Esfahani, J., 2015. "Structural optimization of nanofluid flow around an equilateral triangular obstacle," Energy, Elsevier, vol. 88(C), pages 385-398.
    7. Solangi, K.H. & Kazi, S.N. & Luhur, M.R. & Badarudin, A. & Amiri, A. & Sadri, Rad & Zubir, M.N.M. & Gharehkhani, Samira & Teng, K.H., 2015. "A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids," Energy, Elsevier, vol. 89(C), pages 1065-1086.
    8. Poyyamozhi, N. & Kumar, S. Senthil & Kumar, R. Ashok & Soundararajan, Gopinath, 2024. "An investigation into enhancing energy storage capacity of solar ponds integrated with nanoparticles through PCM coupling and RSM optimization," Renewable Energy, Elsevier, vol. 221(C).
    9. Sunil Kumar & Mridul Sharma & Anju Bala & Anil Kumar & Rajesh Maithani & Sachin Sharma & Tabish Alam & Naveen Kumar Gupta & Mohsen Sharifpur, 2022. "Enhanced Heat Transfer Using Oil-Based Nanofluid Flow through Conduits: A Review," Energies, MDPI, vol. 15(22), pages 1-28, November.
    10. Colangelo, Gianpiero & Favale, Ernani & Miglietta, Paola & Milanese, Marco & de Risi, Arturo, 2016. "Thermal conductivity, viscosity and stability of Al2O3-diathermic oil nanofluids for solar energy systems," Energy, Elsevier, vol. 95(C), pages 124-136.
    11. Manikandan, S. & Rajan, K.S., 2015. "MgO-Therminol 55 nanofluids for efficient energy management: Analysis of transient heat transfer performance," Energy, Elsevier, vol. 88(C), pages 408-416.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lomascolo, Mauro & Colangelo, Gianpiero & Milanese, Marco & de Risi, Arturo, 2015. "Review of heat transfer in nanofluids: Conductive, convective and radiative experimental results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1182-1198.
    2. Abu Shadate Faisal Mahamude & Wan Sharuzi Wan Harun & Kumaran Kadirgama & Devarajan Ramasamy & Kaniz Farhana & Khalid Saleh & Talal Yusaf, 2022. "Experimental Study on the Efficiency Improvement of Flat Plate Solar Collectors Using Hybrid Nanofluids Graphene/Waste Cotton," Energies, MDPI, vol. 15(7), pages 1-27, March.
    3. Ding, L.C. & Akbarzadeh, A. & Tan, L., 2018. "A review of power generation with thermoelectric system and its alternative with solar ponds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 799-812.
    4. Abdin, Z. & Alim, M.A. & Saidur, R. & Islam, M.R. & Rashmi, W. & Mekhilef, S. & Wadi, A., 2013. "Solar energy harvesting with the application of nanotechnology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 837-852.
    5. Azmi, W.H. & Sharif, M.Z. & Yusof, T.M. & Mamat, Rizalman & Redhwan, A.A.M., 2017. "Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 415-428.
    6. Ranga Babu, J.A. & Kumar, K. Kiran & Srinivasa Rao, S., 2017. "State-of-art review on hybrid nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 551-565.
    7. Amigo, José & Suárez, Francisco, 2018. "Ground heat storage beneath salt-gradient solar ponds under constant heat demand," Energy, Elsevier, vol. 144(C), pages 657-668.
    8. Amigo, José & Meza, Francisco & Suárez, Francisco, 2017. "A transient model for temperature prediction in a salt-gradient solar pond and the ground beneath it," Energy, Elsevier, vol. 132(C), pages 257-268.
    9. Solangi, K.H. & Kazi, S.N. & Luhur, M.R. & Badarudin, A. & Amiri, A. & Sadri, Rad & Zubir, M.N.M. & Gharehkhani, Samira & Teng, K.H., 2015. "A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids," Energy, Elsevier, vol. 89(C), pages 1065-1086.
    10. Javadi, F.S. & Saidur, R. & Kamalisarvestani, M., 2013. "Investigating performance improvement of solar collectors by using nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 232-245.
    11. Anagnostopoulos, Argyrios & Sebastia-Saez, Daniel & Campbell, Alasdair N. & Arellano-Garcia, Harvey, 2020. "Finite element modelling of the thermal performance of salinity gradient solar ponds," Energy, Elsevier, vol. 203(C).
    12. Karatas, Mehmet & Bicen, Yunus, 2022. "Nanoparticles for next-generation transformer insulating fluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    13. Suman, Siddharth & Khan, Mohd. Kaleem & Pathak, Manabendra, 2015. "Performance enhancement of solar collectors—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 192-210.
    14. Sarkar, Jahar & Ghosh, Pradyumna & Adil, Arjumand, 2015. "A review on hybrid nanofluids: Recent research, development and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 164-177.
    15. Leong, K.Y. & Ku Ahmad, K.Z. & Ong, Hwai Chyuan & Ghazali, M.J. & Baharum, Azizah, 2017. "Synthesis and thermal conductivity characteristic of hybrid nanofluids – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 868-878.
    16. Salata, F. & Coppi, M., 2014. "A first approach study on the desalination of sea water using heat transformers powered by solar ponds," Applied Energy, Elsevier, vol. 136(C), pages 611-618.
    17. Vanaki, Sh.M. & Ganesan, P. & Mohammed, H.A., 2016. "Numerical study of convective heat transfer of nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1212-1239.
    18. Gupta, Munish & Singh, Vinay & Kumar, Rajesh & Said, Z., 2017. "A review on thermophysical properties of nanofluids and heat transfer applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 638-670.
    19. Hussien, Ahmed A. & Abdullah, Mohd Z. & Al-Nimr, Moh’d A., 2016. "Single-phase heat transfer enhancement in micro/minichannels using nanofluids: Theory and applications," Applied Energy, Elsevier, vol. 164(C), pages 733-755.
    20. Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:68:y:2014:i:c:p:318-326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.