IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v74y2014icp863-870.html
   My bibliography  Save this article

Numerical simulation of nanofluid application in a C-shaped chaotic channel: A potential approach for energy efficiency improvement

Author

Listed:
  • Bahiraei, Mehdi
  • Hangi, Morteza

Abstract

This study aims to evaluate the energy efficiency of nanofluid as a heat transfer fluid in a chaotic channel. To this end, hydrothermal characteristics of the water–Al2O3 nanofluid are numerically investigated in C-shaped and straight channels using single- and two-phase methods and then, the results are compared with each other. In the C-shaped channel, heat transfer and pressure drop show higher values in comparison with the straight channel, which is due to intense mixing in the chaotic geometry, such that the velocity and temperature contours in the C-shaped channel are more uniform than those in the straight one. Using the two-phase method, the concentration distribution is obtained non-uniform at the cross section of the straight channel, while intense mixing in the C-shaped channel makes distribution of the nanoparticles uniform. In comparison with water, using the nanofluid through both channels presents higher heat transfer and pressure drop. However, merit of using the nanofluid in the C-shaped channel is greater than that in the straight one. In this regard, simultaneous application of nanofluids, as heat transfer fluids, and chaotic channel, as a modified geometry, can result in not only higher energy efficiency, but also preventing nanoparticles agglomeration due to the intense mixing.

Suggested Citation

  • Bahiraei, Mehdi & Hangi, Morteza, 2014. "Numerical simulation of nanofluid application in a C-shaped chaotic channel: A potential approach for energy efficiency improvement," Energy, Elsevier, vol. 74(C), pages 863-870.
  • Handle: RePEc:eee:energy:v:74:y:2014:i:c:p:863-870
    DOI: 10.1016/j.energy.2014.07.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214008834
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.07.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xia, H.H. & Tang, G.H. & Shi, Y. & Tao, W.Q., 2014. "Simulation of heat transfer enhancement by longitudinal vortex generators in dimple heat exchangers," Energy, Elsevier, vol. 74(C), pages 27-36.
    2. Mohammadi, K. & Sabzpooshani, M., 2013. "Comprehensive performance evaluation and parametric studies of single pass solar air heater with fins and baffles attached over the absorber plate," Energy, Elsevier, vol. 57(C), pages 741-750.
    3. Kazemi-Beydokhti, Amin & Zeinali Heris, Saeed, 2012. "Thermal optimization of combined heat and power (CHP) systems using nanofluids," Energy, Elsevier, vol. 44(1), pages 241-247.
    4. Mahian, Omid & Mahmud, Shohel & Heris, Saeed Zeinali, 2012. "Analysis of entropy generation between co-rotating cylinders using nanofluids," Energy, Elsevier, vol. 44(1), pages 438-446.
    5. Saidi, Majid & Karimi, Gholamreza, 2014. "Free convection cooling in modified L-shape enclosures using copper–water nanofluid," Energy, Elsevier, vol. 70(C), pages 251-271.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hilo, Ali Kareem & Abu Talib, Abd Rahim & Acosta Iborra, Antonio & Hameed Sultan, Mohammed Thariq & Abdul Hamid, Mohd Faisal, 2020. "Effect of corrugated wall combined with backward-facing step channel on fluid flow and heat transfer," Energy, Elsevier, vol. 190(C).
    2. Garoosi, Faroogh & Hoseininejad, Faraz & Rashidi, Mohammad Mehdi, 2016. "Numerical study of natural convection heat transfer in a heat exchanger filled with nanofluids," Energy, Elsevier, vol. 109(C), pages 664-678.
    3. Rashidi, S. & Bovand, M. & Abolfazli Esfahani, J., 2015. "Structural optimization of nanofluid flow around an equilateral triangular obstacle," Energy, Elsevier, vol. 88(C), pages 385-398.
    4. Bazri, Shahab & Badruddin, Irfan Anjum & Naghavi, Mohammad Sajad & Bahiraei, Mehdi, 2018. "A review of numerical studies on solar collectors integrated with latent heat storage systems employing fins or nanoparticles," Renewable Energy, Elsevier, vol. 118(C), pages 761-778.
    5. Mamourian, Mojtaba & Milani Shirvan, Kamel & Mirzakhanlari, Soroush, 2016. "Two phase simulation and sensitivity analysis of effective parameters on turbulent combined heat transfer and pressure drop in a solar heat exchanger filled with nanofluid by Response Surface Methodol," Energy, Elsevier, vol. 109(C), pages 49-61.
    6. Anand, Vishal, 2015. "Entropy generation analysis of laminar flow of a nanofluid in a circular tube immersed in an isothermal external fluid," Energy, Elsevier, vol. 93(P1), pages 154-164.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Firoozzadeh, Mohammad & Shiravi, Amir Hossein & Lotfi, Marzieh & Aidarova, Saule & Sharipova, Altynay, 2021. "Optimum concentration of carbon black aqueous nanofluid as coolant of photovoltaic modules: A case study," Energy, Elsevier, vol. 225(C).
    2. Rashidi, S. & Bovand, M. & Abolfazli Esfahani, J., 2015. "Structural optimization of nanofluid flow around an equilateral triangular obstacle," Energy, Elsevier, vol. 88(C), pages 385-398.
    3. Bianco, Vincenzo & Manca, Oronzio & Nardini, Sergio, 2014. "Performance analysis of turbulent convection heat transfer of Al2O3 water-nanofluid in circular tubes at constant wall temperature," Energy, Elsevier, vol. 77(C), pages 403-413.
    4. Yang, Jian-Feng & Lin, Yuan-Sheng & Ke, Han-Bing & Zeng, Min & Wang, Qiu-Wang, 2016. "Investigation on combined multiple shell-pass shell-and-tube heat exchanger with continuous helical baffles," Energy, Elsevier, vol. 115(P3), pages 1572-1579.
    5. Sheikholeslami, Mohsen & Ganji, Davood Domiri, 2014. "Ferrohydrodynamic and magnetohydrodynamic effects on ferrofluid flow and convective heat transfer," Energy, Elsevier, vol. 75(C), pages 400-410.
    6. Sheikholeslami, M. & Gorji-Bandpy, M. & Ganji, D.D., 2013. "Numerical investigation of MHD effects on Al2O3–water nanofluid flow and heat transfer in a semi-annulus enclosure using LBM," Energy, Elsevier, vol. 60(C), pages 501-510.
    7. Nidhul, Kottayat & Kumar, Sachin & Yadav, Ajay Kumar & Anish, S., 2020. "Enhanced thermo-hydraulic performance in a V-ribbed triangular duct solar air heater: CFD and exergy analysis," Energy, Elsevier, vol. 200(C).
    8. Sheikholeslami, Mohsen & Gorji-Bandpy, Mofid & Ganji, Davood Domiri, 2015. "Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 444-469.
    9. Ural, Tolga, 2019. "Experimental performance assessment of a new flat-plate solar air collector having textile fabric as absorber using energy and exergy analyses," Energy, Elsevier, vol. 188(C).
    10. Torabi, Mohsen & Zhang, Kaili & Yang, Guangcheng & Wang, Jun & Wu, Peng, 2015. "Heat transfer and entropy generation analyses in a channel partially filled with porous media using local thermal non-equilibrium model," Energy, Elsevier, vol. 82(C), pages 922-938.
    11. Anand, Vishal, 2015. "Entropy generation analysis of laminar flow of a nanofluid in a circular tube immersed in an isothermal external fluid," Energy, Elsevier, vol. 93(P1), pages 154-164.
    12. Abhishek Kumar Goel & S. N. Singh, 2020. "Experimental study of heat transfer characteristics of an impinging jet solar air heater with fins," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 3641-3653, April.
    13. Selimefendigil, Fatih & Öztop, Hakan F., 2020. "The potential benefits of surface corrugation and hybrid nanofluids in channel flow on the performance enhancement of a thermo-electric module in energy systems," Energy, Elsevier, vol. 213(C).
    14. Qader, Bootan S. & Supeni, E.E. & Ariffin, M.K.A. & Talib, A.R. Abu, 2019. "RSM approach for modeling and optimization of designing parameters for inclined fins of solar air heater," Renewable Energy, Elsevier, vol. 136(C), pages 48-68.
    15. Solangi, K.H. & Kazi, S.N. & Luhur, M.R. & Badarudin, A. & Amiri, A. & Sadri, Rad & Zubir, M.N.M. & Gharehkhani, Samira & Teng, K.H., 2015. "A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids," Energy, Elsevier, vol. 89(C), pages 1065-1086.
    16. Bahiraei, Mehdi & Hangi, Morteza & Saeedan, Mahdi, 2015. "A novel application for energy efficiency improvement using nanofluid in shell and tube heat exchanger equipped with helical baffles," Energy, Elsevier, vol. 93(P2), pages 2229-2240.
    17. Kareem, M.W. & Habib, Khairul & Pasha, Amjad A. & Irshad, Kashif & Afolabi, L.O. & Saha, Bidyut Baran, 2022. "Experimental study of multi-pass solar air thermal collector system assisted with sensible energy-storing matrix," Energy, Elsevier, vol. 245(C).
    18. Garoosi, Faroogh & Hoseininejad, Faraz & Rashidi, Mohammad Mehdi, 2016. "Numerical study of natural convection heat transfer in a heat exchanger filled with nanofluids," Energy, Elsevier, vol. 109(C), pages 664-678.
    19. Srinivasacharya, D. & Bindu, K. Hima, 2016. "Entropy generation in a porous annulus due to micropolar fluid flow with slip and convective boundary conditions," Energy, Elsevier, vol. 111(C), pages 165-177.
    20. Mwesigye, Aggrey & Huan, Zhongjie & Meyer, Josua P., 2015. "Thermodynamic optimisation of the performance of a parabolic trough receiver using synthetic oil–Al2O3 nanofluid," Applied Energy, Elsevier, vol. 156(C), pages 398-412.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:74:y:2014:i:c:p:863-870. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.