IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v84y2015icp186-195.html
   My bibliography  Save this article

Inter-cycle variability of ignition delay in an ethanol fumigated common rail diesel engine

Author

Listed:
  • Bodisco, Timothy
  • Tröndle, Philipp
  • Brown, Richard J.

Abstract

An experimental study has been performed to investigate the ignition delay of a modern heavy-duty common-rail diesel engine run with fumigated ethanol substitutions up to 40% on an energy basis. The ignition delay was determined through the use of statistical modelling in a Bayesian framework—this framework allows for the accurate determination of the start of combustion from single consecutive cycles and does not require any differentiation of the in-cylinder pressure signal. At full load the ignition delay has been shown to decrease with increasing ethanol substitutions and evidence of combustion with high ethanol substitutions prior to diesel injection have also been shown experimentally and by modelling. Whereas, at half load increasing ethanol substitutions have increased the ignition delay. A threshold absolute air to fuel ratio (mole basis) of above ∼110 for consistent operation has been determined from the inter-cycle variability of the ignition delay, a result that agrees well with previous research of other in-cylinder parameters and further highlights the correlation between the air to fuel ratio and inter-cycle variability.

Suggested Citation

  • Bodisco, Timothy & Tröndle, Philipp & Brown, Richard J., 2015. "Inter-cycle variability of ignition delay in an ethanol fumigated common rail diesel engine," Energy, Elsevier, vol. 84(C), pages 186-195.
  • Handle: RePEc:eee:energy:v:84:y:2015:i:c:p:186-195
    DOI: 10.1016/j.energy.2015.02.107
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215002911
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.02.107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Imran, A. & Varman, M. & Masjuki, H.H. & Kalam, M.A., 2013. "Review on alcohol fumigation on diesel engine: A viable alternative dual fuel technology for satisfactory engine performance and reduction of environment concerning emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 739-751.
    2. Wu, Horng-Wen & Wang, Ren-Hung & Chen, Ying-Chuan & Ou, Dung-Je & Chen, Teng-Yu, 2014. "Influence of port-inducted ethanol or gasoline on combustion and emission of a closed cycle diesel engine," Energy, Elsevier, vol. 64(C), pages 259-267.
    3. Sarjovaara, Teemu & Alantie, Jussi & Larmi, Martti, 2013. "Ethanol dual-fuel combustion concept on heavy duty engine," Energy, Elsevier, vol. 63(C), pages 76-85.
    4. Kouremenos, D.A. & Rakopoulos, C.D. & Kotsiopoulos, P., 1990. "Comparative performance and emission studies for vaporized diesel fuel and gasoline as supplements in swirl-chamber diesel engines," Energy, Elsevier, vol. 15(12), pages 1153-1160.
    5. Sahoo, B.B. & Sahoo, N. & Saha, U.K., 2009. "Effect of engine parameters and type of gaseous fuel on the performance of dual-fuel gas diesel engines--A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1151-1184, August.
    6. Shafiee, Shahriar & Topal, Erkan, 2009. "When will fossil fuel reserves be diminished?," Energy Policy, Elsevier, vol. 37(1), pages 181-189, January.
    7. Rakopoulos, C.D & Kyritsis, D.C, 2001. "Comparative second-law analysis of internal combustion engine operation for methane, methanol, and dodecane fuels," Energy, Elsevier, vol. 26(7), pages 705-722.
    8. Bodisco, Timothy & Brown, Richard J., 2013. "Inter-cycle variability of in-cylinder pressure parameters in an ethanol fumigated common rail diesel engine," Energy, Elsevier, vol. 52(C), pages 55-65.
    9. Chauhan, Bhupendra Singh & Kumar, Naveen & Pal, Shyam Sunder & Du Jun, Yong, 2011. "Experimental studies on fumigation of ethanol in a small capacity Diesel engine," Energy, Elsevier, vol. 36(2), pages 1030-1038.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Habib Gürbüz & Selim Demirtürk & İsmail Hakkı Akçay & Hüsameddin Akçay, 2021. "Effect of port injection of ethanol on engine performance, exhaust emissions and environmental factors in a dual-fuel diesel engine," Energy & Environment, , vol. 32(5), pages 784-802, August.
    2. Liu, Haifeng & Ma, Guixiang & Hu, Bin & Zheng, Zunqing & Yao, Mingfa, 2018. "Effects of port injection of hydrous ethanol on combustion and emission characteristics in dual-fuel reactivity controlled compression ignition (RCCI) mode," Energy, Elsevier, vol. 145(C), pages 592-602.
    3. Faisal Lodi & Ali Zare & Priyanka Arora & Svetlana Stevanovic & Mohammad Jafari & Zoran Ristovski & Richard J. Brown & Timothy Bodisco, 2020. "Combustion Analysis of a Diesel Engine during Warm up at Different Coolant and Lubricating Oil Temperatures," Energies, MDPI, vol. 13(15), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bodisco, Timothy & Brown, Richard J., 2013. "Inter-cycle variability of in-cylinder pressure parameters in an ethanol fumigated common rail diesel engine," Energy, Elsevier, vol. 52(C), pages 55-65.
    2. Jamuwa, D.K. & Sharma, D. & Soni, S.L., 2017. "Experimental investigation of performance, exhaust emission and combustion parameters of compression ignition engine with varying ethanol energy fractions," Energy, Elsevier, vol. 127(C), pages 544-557.
    3. Telli, Giovani Dambros & Altafini, Carlos Roberto & Rosa, Josimar Souza & Costa, Carlos Alberto, 2018. "Experimental investigation of a compression ignition engine operating on B7 direct injected and hydrous ethanol fumigation," Energy, Elsevier, vol. 165(PB), pages 106-117.
    4. Hoseinpour, Marziyeh & Sadrnia, Hassan & Tabasizadeh, Mohammad & Ghobadian, Barat, 2017. "Energy and exergy analyses of a diesel engine fueled with diesel, biodiesel-diesel blend and gasoline fumigation," Energy, Elsevier, vol. 141(C), pages 2408-2420.
    5. Awad, Omar I. & Ali, Obed M. & Mamat, Rizalman & Abdullah, A.A. & Najafi, G. & Kamarulzaman, M.K. & Yusri, I.M. & Noor, M.M., 2017. "Using fusel oil as a blend in gasoline to improve SI engine efficiencies: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1232-1242.
    6. Sahoo, Bibhuti B. & Saha, Ujjwal K. & Sahoo, Niranjan, 2011. "Theoretical performance limits of a syngas–diesel fueled compression ignition engine from second law analysis," Energy, Elsevier, vol. 36(2), pages 760-769.
    7. Ghadikolaei, Meisam Ahmadi & Wong, Pak Kin & Cheung, Chun Shun & Ning, Zhi & Yung, Ka-Fu & Zhao, Jing & Gali, Nirmal Kumar & Berenjestanaki, Alireza Valipour, 2021. "Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    8. Loganathan, S. & Leenus Jesu Martin, M. & Nagalingam, B. & Prabhu, L., 2018. "Heat release rate and performance simulation of DME fuelled diesel engine using oxygenate correction factor and load correction factor in double Wiebe function," Energy, Elsevier, vol. 150(C), pages 77-91.
    9. Chintala, Venkateswarlu & Subramanian, K.A., 2014. "Assessment of maximum available work of a hydrogen fueled compression ignition engine using exergy analysis," Energy, Elsevier, vol. 67(C), pages 162-175.
    10. Mahla, S.K. & Dhir, Amit & Gill, Kanwar J.S. & Cho, Haeng Muk & Lim, Hee Chang & Chauhan, Bhupendra Singh, 2018. "Influence of EGR on the simultaneous reduction of NOx-smoke emissions trade-off under CNG-biodiesel dual fuel engine," Energy, Elsevier, vol. 152(C), pages 303-312.
    11. Yusri, I.M. & Mamat, R. & Najafi, G. & Razman, A. & Awad, Omar I. & Azmi, W.H. & Ishak, W.F.W. & Shaiful, A.I.M., 2017. "Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: A review on engine performance and exhaust emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 169-181.
    12. Ghadikolaei, Meisam Ahmadi, 2016. "Effect of alcohol blend and fumigation on regulated and unregulated emissions of IC engines—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1440-1495.
    13. Rakopoulos, C.D. & Antonopoulos, K.A. & Rakopoulos, D.C., 2007. "Experimental heat release analysis and emissions of a HSDI diesel engine fueled with ethanol–diesel fuel blends," Energy, Elsevier, vol. 32(10), pages 1791-1808.
    14. Sarjovaara, Teemu & Alantie, Jussi & Larmi, Martti, 2013. "Ethanol dual-fuel combustion concept on heavy duty engine," Energy, Elsevier, vol. 63(C), pages 76-85.
    15. Tongroon, Manida & Chuepeng, Sathaporn, 2022. "Adjacent combustion heat release and emissions over various load ranges in a premixed direct injection diesel engine: A comparison between gasoline and ethanol port injection," Energy, Elsevier, vol. 243(C).
    16. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Raghavan, V. & Saravanan, C.G. & Lee, P.S. & Chua, K.J.E. & Chou, S.K., 2014. "Investigation of evaporation and engine characteristics of pine oil biofuel fumigated in the inlet manifold of a diesel engine," Applied Energy, Elsevier, vol. 115(C), pages 514-524.
    17. Aye, Goodness & Gupta, Rangan & Hammoudeh, Shawkat & Kim, Won Joong, 2015. "Forecasting the price of gold using dynamic model averaging," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 257-266.
    18. Ali Mubarak Al-Qahtani, 2023. "A Comprehensive Review in Microwave Pyrolysis of Biomass, Syngas Production and Utilisation," Energies, MDPI, vol. 16(19), pages 1-16, September.
    19. Jen-Yu Lee & Tien-Thinh Nguyen & Hong-Giang Nguyen & Jen-Yao Lee, 2022. "Towards Predictive Crude Oil Purchase: A Case Study in the USA and Europe," Energies, MDPI, vol. 15(11), pages 1-15, May.
    20. Steve Newbold & Charles Griffiths & Christopher C. Moore & Ann Wolverton & Elizabeth Kopits, 2010. "The "Social Cost of Carbon" Made Simple," NCEE Working Paper Series 201007, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Aug 2010.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:84:y:2015:i:c:p:186-195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.