IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v77y2014icp397-402.html
   My bibliography  Save this article

Travelling-wave thermoacoustic high-temperature heat pump for industrial waste heat recovery

Author

Listed:
  • Yang, Zhao
  • Zhuo, Yang
  • Ercang, Luo
  • Yuan, Zhou

Abstract

Many industrial processes need steam at temperatures from 100 to 200 °C, normally produced by directly heating water via coal, natural gas or oil combustion. Nevertheless, large amounts of unused heat below 100 °C are wasted in other industrial processes. In principle, a high-temperature heat pump capable of using the industrial waste heat can provide steam above 100 °C. However, until now, efficient and reliable heat pump technology for the application is not available. In this paper, a novel TWTAHP (travelling-wave thermoacoustic heat pump) is presented to meet this requirement, which can potentially solve the problems occurring in conventional vapour-compression heat pump such as high discharge temperatures, high pressure ratio, and low efficiency. This system comprises three linear pressure wave generators which are coupled with three heat pumps into one single closed loop. Theoretically, this system is able to complete the thermoacoustic conversion with a much higher efficiency. The theoretical simulations were performed at varied waste-heat temperatures (40−70 °C) and different hot-end temperatures (120−150 °C). The computing results show that this new heat pump system has a high relative Carnot efficiency of about 50%–60%. In using a reliable linear compressor and a thermoacoustic heat pump with no-moving parts, this technology has an inherent potential for high reliability. Therefore, it is believed that the travelling-wave thermoacoustic heat pump is an enabling technology with good prospects in efficiently harvesting industrial waste heat.

Suggested Citation

  • Yang, Zhao & Zhuo, Yang & Ercang, Luo & Yuan, Zhou, 2014. "Travelling-wave thermoacoustic high-temperature heat pump for industrial waste heat recovery," Energy, Elsevier, vol. 77(C), pages 397-402.
  • Handle: RePEc:eee:energy:v:77:y:2014:i:c:p:397-402
    DOI: 10.1016/j.energy.2014.09.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214010792
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.09.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Zhaoyong & Zhao, Li & Zhao, Xuezheng & Li, Hailong, 2012. "The occurrence of pinch point and its effects on the performance of high temperature heat pump," Applied Energy, Elsevier, vol. 97(C), pages 869-875.
    2. Yang, Wei, 2013. "Experimental performance analysis of a direct-expansion ground source heat pump in Xiangtan, China," Energy, Elsevier, vol. 59(C), pages 334-339.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao, Lei & Luo, Kaiqi & Zhao, Dan & Chen, Geng & Bi, Tianjiao & Xu, Jingyuan & Luo, Ercang, 2023. "Time-domain acoustic-electrical analogy investigation on a high-power traveling-wave thermoacoustic electric generator," Energy, Elsevier, vol. 263(PE).
    2. Al-Kayiem, Ali & Yu, Zhibin, 2016. "Numerical investigation of a looped-tube travelling-wave thermoacoustic engine with a bypass pipe," Energy, Elsevier, vol. 112(C), pages 111-120.
    3. Chen, Hanfei & Lin, ChihChieh & Longtin, Jon P., 2019. "Dynamic modeling and parameter optimization of a free-piston Vuilleumier heat pump with dwell-based motion," Applied Energy, Elsevier, vol. 242(C), pages 741-751.
    4. Hamood, Ahmed & Jaworski, Artur J., 2023. "Thermoacoustic cascade engine free from resonance length," Energy, Elsevier, vol. 271(C).
    5. Hamood, Ahmed & Jaworski, Artur J. & Mao, Xiaoan & Simpson, Kevin, 2018. "Design and construction of a two-stage thermoacoustic electricity generator with push-pull linear alternator," Energy, Elsevier, vol. 144(C), pages 61-72.
    6. Xu, Jingyuan & Zhang, Limin & Hu, Jianying & Wu, Zhanghua & Bi, Tianjiao & Dai, Wei & Luo, Ercang, 2016. "An efficient looped multiple-stage thermoacoustically-driven cryocooler for liquefaction and recondensation of natural gas," Energy, Elsevier, vol. 101(C), pages 427-433.
    7. Wang, Kai & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Thermoacoustic Stirling power generation from LNG cold energy and low-temperature waste heat," Energy, Elsevier, vol. 127(C), pages 280-290.
    8. Xiao, Lei & Luo, Kaiqi & Chi, Jiaxin & Chen, Geng & Wu, Zhanghua & Luo, Ercang & Xu, Jingyuan, 2023. "Study on a direct-coupling thermoacoustic refrigerator using time-domain acoustic-electrical analogy method," Applied Energy, Elsevier, vol. 339(C).
    9. Napolitano, Marialuisa & Romano, Rosario & Dragonetti, Raffaele, 2017. "Open-cell foams for thermoacoustic applications," Energy, Elsevier, vol. 138(C), pages 147-156.
    10. Yang, Fusheng & Wu, Zhen & Liu, Shengzhe & Zhang, Yang & Wang, Geoff & Zhang, Zaoxiao & Wang, Yuqi, 2018. "Theoretical formulation and performance analysis of a novel hydride heat Pump(HHP) integrated heat recovery system," Energy, Elsevier, vol. 163(C), pages 208-220.
    11. Hassan, I.A. & Ramadan, Haitham S. & Saleh, Mohamed A. & Hissel, Daniel, 2021. "Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    12. Xu, Jingyuan & Hu, Jianying & Sun, Yanlei & Wang, Huizhi & Wu, Zhanghua & Hu, Jiangfeng & Hochgreb, Simone & Luo, Ercang, 2020. "A cascade-looped thermoacoustic driven cryocooler with different-diameter resonance tubes. Part Ⅱ: Experimental study and comparison," Energy, Elsevier, vol. 207(C).
    13. Xu, Jingyuan & Luo, Ercang & Hochgreb, Simone, 2021. "A thermoacoustic combined cooling, heating, and power (CCHP) system for waste heat and LNG cold energy recovery," Energy, Elsevier, vol. 227(C).
    14. Xu, Jingyuan & Luo, Ercang & Hochgreb, Simone, 2020. "Study on a heat-driven thermoacoustic refrigerator for low-grade heat recovery," Applied Energy, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jian & Xu, Yantao & Zhang, Yaning & Shuai, Yong & Li, Bingxi, 2022. "Multi-objective optimization of low temperature cooling water organic Rankine cycle using dual pinch point temperature difference technologies," Energy, Elsevier, vol. 240(C).
    2. Zhou, Zhihua & Zhang, Zhiming & Chen, Guanyi & Zuo, Jian & Xu, Pan & Meng, Chong & Yu, Zhun, 2016. "Feasibility of ground coupled heat pumps in office buildings: A China study," Applied Energy, Elsevier, vol. 162(C), pages 266-277.
    3. Mateu-Royo, Carlos & Navarro-Esbrí, Joaquín & Mota-Babiloni, Adrián & Molés, Francisco & Amat-Albuixech, Marta, 2019. "Experimental exergy and energy analysis of a novel high-temperature heat pump with scroll compressor for waste heat recovery," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Yang, Zhao & Wu, Xi, 2013. "Retrofits and options for the alternatives to HCFC-22," Energy, Elsevier, vol. 59(C), pages 1-21.
    5. Al-Ameen, Yasameen & Ianakiev, Anton & Evans, Robert, 2017. "Thermal performance of a solar assisted horizontal ground heat exchanger," Energy, Elsevier, vol. 140(P1), pages 1216-1227.
    6. El-Morsi, Mohamed, 2015. "Energy and exergy analysis of LPG (liquefied petroleum gas) as a drop in replacement for R134a in domestic refrigerators," Energy, Elsevier, vol. 86(C), pages 344-353.
    7. Karytsas, Spyridon & Choropanitis, Ioannis, 2017. "Barriers against and actions towards renewable energy technologies diffusion: A Principal Component Analysis for residential ground source heat pump (GSHP) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 252-271.
    8. Parham Eslami-Nejad & Messaoud Badache & Arash Bastani & Zine Aidoun, 2018. "Detailed Theoretical Characterization of a Transcritical CO 2 Direct Expansion Ground Source Heat Pump Water Heater," Energies, MDPI, vol. 11(2), pages 1-16, February.
    9. Hou, Jianchao & Cao, Mengchao & Liu, Pingkuo, 2018. "Development and utilization of geothermal energy in China: Current practices and future strategies," Renewable Energy, Elsevier, vol. 125(C), pages 401-412.
    10. Hakkaki-Fard, Ali & Eslami-Nejad, Parham & Aidoun, Zine & Ouzzane, Mohamed, 2015. "A techno-economic comparison of a direct expansion ground-source and an air-source heat pump system in Canadian cold climates," Energy, Elsevier, vol. 87(C), pages 49-59.
    11. Borge-Diez, David & Colmenar-Santos, Antonio & Pérez-Molina, Clara & López-Rey, África, 2015. "Geothermal source heat pumps under energy services companies finance scheme to increase energy efficiency and production in stockbreeding facilities," Energy, Elsevier, vol. 88(C), pages 821-836.
    12. Zhu, Jialing & Hu, Kaiyong & Lu, Xinli & Huang, Xiaoxue & Liu, Ketao & Wu, Xiujie, 2015. "A review of geothermal energy resources, development, and applications in China: Current status and prospects," Energy, Elsevier, vol. 93(P1), pages 466-483.
    13. Longo, L. & Colantoni, A. & Castellucci, S. & Carlini, M. & Vecchione, L. & Savuto, E. & Pallozzi, V. & Di Carlo, A. & Bocci, E. & Moneti, M. & Cocchi, S. & Boubaker, K., 2015. "DEA (data envelopment analysis)-assisted supporting measures for ground coupled heat pumps implementing in Italy: A case study," Energy, Elsevier, vol. 90(P2), pages 1967-1972.
    14. Reda, Francesco & Arcuri, Natale & Loiacono, Pasquale & Mazzeo, Domenico, 2015. "Energy assessment of solar technologies coupled with a ground source heat pump system for residential energy supply in Southern European climates," Energy, Elsevier, vol. 91(C), pages 294-305.
    15. Zhou, Zhihua & Wu, Shengwei & Du, Tao & Chen, Guanyi & Zhang, Zhiming & Zuo, Jian & He, Qing, 2016. "The energy-saving effects of ground-coupled heat pump system integrated with borehole free cooling: A study in China," Applied Energy, Elsevier, vol. 182(C), pages 9-19.
    16. Xi, J. & Li, Y. & Liu, M. & Wang, R.Z., 2017. "Study on the thermal effect of the ground heat exchanger of GSHP in the eastern China area," Energy, Elsevier, vol. 141(C), pages 56-65.
    17. Ndiaye, Demba, 2016. "Reliability and performance of direct-expansion ground-coupled heat pump systems: Issues and possible solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 802-814.
    18. Kong, Minsuk & Alvarado, Jorge L. & Thies, Curt & Morefield, Sean & Marsh, Charles P., 2017. "Field evaluation of microencapsulated phase change material slurry in ground source heat pump systems," Energy, Elsevier, vol. 122(C), pages 691-700.
    19. Zheng, Nan & Song, Weidong & Zhao, Li, 2013. "Theoretical and experimental investigations on the changing regularity of the extreme point of the temperature difference between zeotropic mixtures and heat transfer fluid," Energy, Elsevier, vol. 55(C), pages 541-552.
    20. Akbulut, Ugur & Kıncay, Olcay & Utlu, Zafer, 2016. "Analysis of a wall cooling system using a heat pump," Renewable Energy, Elsevier, vol. 85(C), pages 540-553.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:77:y:2014:i:c:p:397-402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.