IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v74y2014icp455-463.html
   My bibliography  Save this article

Modelling future uptake of distributed energy resources under alternative tariff structures

Author

Listed:
  • Higgins, Andrew
  • Grozev, George
  • Ren, Zhengen
  • Garner, Stephen
  • Walden, Glenn
  • Taylor, Michelle

Abstract

Current residential price tariff structures in Australia, which are predominately based on a flat daily supply charge combined with a per kWh electricity charge, create a distortion to the electricity consumption pattern, leading to larger afternoon and evening peak demands across the networks. Battery storage connected to solar PV (photovoltaic) array would reduce these effects in the presence of alternative price tariffs that incentivise households to shift load and reduce the peak demand. This challenge is addressed using a choice-diffusion model to forecast PV and battery storage uptake to 2025 for a case study in Townsville, Australia. Sensitivity of uptake is tested for six different price tariffs based on flat, time-of-use and critical-peak-pricing. Uptake of battery storage connected to solar PV ranged between 3% and 5.4% of households at 2025, depending on the price tariff, with the larger PV/battery options being more popular. Percentage of households disconnecting from the grid at 2025 is in the order of one percent depending on the price tariff. A sensitivity analysis showed battery price was a major driver to uptake whilst typical financial subsidies to purchase price have a lower effect.

Suggested Citation

  • Higgins, Andrew & Grozev, George & Ren, Zhengen & Garner, Stephen & Walden, Glenn & Taylor, Michelle, 2014. "Modelling future uptake of distributed energy resources under alternative tariff structures," Energy, Elsevier, vol. 74(C), pages 455-463.
  • Handle: RePEc:eee:energy:v:74:y:2014:i:c:p:455-463
    DOI: 10.1016/j.energy.2014.07.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214008329
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.07.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ren, Zhengen & Paevere, Phillip & McNamara, Cheryl, 2012. "A local-community-level, physically-based model of end-use energy consumption by Australian housing stock," Energy Policy, Elsevier, vol. 49(C), pages 586-596.
    2. Dan Horsky & Leonard S. Simon, 1983. "Advertising and the Diffusion of New Products," Marketing Science, INFORMS, vol. 2(1), pages 1-17.
    3. Drude, Lukas & Pereira Junior, Luiz Carlos & Rüther, Ricardo, 2014. "Photovoltaics (PV) and electric vehicle-to-grid (V2G) strategies for peak demand reduction in urban regions in Brazil in a smart grid environment," Renewable Energy, Elsevier, vol. 68(C), pages 443-451.
    4. Wang, Chi-hsiang & Grozev, George & Seo, Seongwon, 2012. "Decomposition and statistical analysis for regional electricity demand forecasting," Energy, Elsevier, vol. 41(1), pages 313-325.
    5. Rudolf, Viktor & Papastergiou, Konstantinos D., 2013. "Financial analysis of utility scale photovoltaic plants with battery energy storage," Energy Policy, Elsevier, vol. 63(C), pages 139-146.
    6. Frank M. Bass & Trichy V. Krishnan & Dipak C. Jain, 1994. "Why the Bass Model Fits without Decision Variables," Marketing Science, INFORMS, vol. 13(3), pages 203-223.
    7. David Revelt & Kenneth Train, 1998. "Mixed Logit With Repeated Choices: Households' Choices Of Appliance Efficiency Level," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 647-657, November.
    8. Higgins, Andrew & McNamara, Cheryl & Foliente, Greg, 2014. "Modelling future uptake of solar photo-voltaics and water heaters under different government incentives," Technological Forecasting and Social Change, Elsevier, vol. 83(C), pages 142-155.
    9. Ernst, Christian-Simon & Hackbarth, André & Madlener, Reinhard & Lunz, Benedikt & Uwe Sauer, Dirk & Eckstein, Lutz, 2011. "Battery sizing for serial plug-in hybrid electric vehicles: A model-based economic analysis for Germany," Energy Policy, Elsevier, vol. 39(10), pages 5871-5882, October.
    10. Herter, Karen & Wayland, Seth, 2010. "Residential response to critical-peak pricing of electricity: California evidence," Energy, Elsevier, vol. 35(4), pages 1561-1567.
    11. Stoppato, A., 2008. "Life cycle assessment of photovoltaic electricity generation," Energy, Elsevier, vol. 33(2), pages 224-232.
    12. Herter, Karen, 2007. "Residential implementation of critical-peak pricing of electricity," Energy Policy, Elsevier, vol. 35(4), pages 2121-2130, April.
    13. Yamaguchi, Yohei & Akai, Kenju & Shen, Junyi & Fujimura, Naoki & Shimoda, Yoshiyuki & Saijo, Tatsuyoshi, 2013. "Prediction of photovoltaic and solar water heater diffusion and evaluation of promotion policies on the basis of consumers’ choices," Applied Energy, Elsevier, vol. 102(C), pages 1148-1159.
    14. Couture, Toby & Gagnon, Yves, 2010. "An analysis of feed-in tariff remuneration models: Implications for renewable energy investment," Energy Policy, Elsevier, vol. 38(2), pages 955-965, February.
    15. Ernst, Christian-Simon & Hackbarth, André & Madlener, Reinhard & Lunz, Benedikt & Sauer, Dirk Uwe & Eckstein, Lutz, 2010. "Battery Sizing for Serial Plug-in Hybrid Vehicles: A Model-Based Economic Analysis for Germany," FCN Working Papers 14/2010, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised Jun 2011.
    16. Bhat, Chandra R. & Guo, Jessica, 2004. "A mixed spatially correlated logit model: formulation and application to residential choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 38(2), pages 147-168, February.
    17. Ahmad Faruqui & Sanem Sergici, 2010. "Household response to dynamic pricing of electricity: a survey of 15 experiments," Journal of Regulatory Economics, Springer, vol. 38(2), pages 193-225, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Punda, Luka & Capuder, Tomislav & Pandžić, Hrvoje & Delimar, Marko, 2017. "Integration of renewable energy sources in southeast Europe: A review of incentive mechanisms and feasibility of investments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 77-88.
    2. Gopinath Subramani & Vigna K. Ramachandaramurthy & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Frede Blaabjerg & Josep M. Guerrero, 2017. "Grid-Tied Photovoltaic and Battery Storage Systems with Malaysian Electricity Tariff—A Review on Maximum Demand Shaving," Energies, MDPI, vol. 10(11), pages 1-17, November.
    3. Say, Kelvin & John, Michele & Dargaville, Roger & Wills, Raymond T., 2018. "The coming disruption: The movement towards the customer renewable energy transition," Energy Policy, Elsevier, vol. 123(C), pages 737-748.
    4. Bennett, Christopher J. & Stewart, Rodney A. & Lu, Jun Wei, 2015. "Development of a three-phase battery energy storage scheduling and operation system for low voltage distribution networks," Applied Energy, Elsevier, vol. 146(C), pages 122-134.
    5. Schreiber, Michael & Wainstein, Martin E. & Hochloff, Patrick & Dargaville, Roger, 2015. "Flexible electricity tariffs: Power and energy price signals designed for a smarter grid," Energy, Elsevier, vol. 93(P2), pages 2568-2581.
    6. Bergaentzlé, Claire & Jensen, Ida Græsted & Skytte, Klaus & Olsen, Ole Jess, 2019. "Electricity grid tariffs as a tool for flexible energy systems: A Danish case study," Energy Policy, Elsevier, vol. 126(C), pages 12-21.
    7. Motlagh, Omid & Paevere, Phillip & Hong, Tang Sai & Grozev, George, 2015. "Analysis of household electricity consumption behaviours: Impact of domestic electricity generation," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 165-178.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Higgins, Andrew & McNamara, Cheryl & Foliente, Greg, 2014. "Modelling future uptake of solar photo-voltaics and water heaters under different government incentives," Technological Forecasting and Social Change, Elsevier, vol. 83(C), pages 142-155.
    2. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    3. Ren, Zhengen & Grozev, George & Higgins, Andrew, 2016. "Modelling impact of PV battery systems on energy consumption and bill savings of Australian houses under alternative tariff structures," Renewable Energy, Elsevier, vol. 89(C), pages 317-330.
    4. Wang, Yong & Li, Lin, 2016. "Critical peak electricity pricing for sustainable manufacturing: Modeling and case studies," Applied Energy, Elsevier, vol. 175(C), pages 40-53.
    5. Fumitoshi Mizutani & Takuro Tanaka & Eri Nakamura, 2015. "The Effect of Demand Response on Electricity Consumption in Japan," Discussion Papers 2015-02, Kobe University, Graduate School of Business Administration.
    6. Kayo MURAKAMI & Takanori IDA, 2019. "Deregulation and status quo bias: Evidence from stated and revealed switching behaviors in the electricity market in Japan," Discussion papers e-19-001, Graduate School of Economics , Kyoto University.
    7. Sukhgeet Kaur & Michael G. Pollitt, 2024. "Farmers' preferences for incentives on solar pumps: evidence from a choice experiment in Punjab," Working Papers EPRG2408, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    8. Woo, C.K. & Sreedharan, P. & Hargreaves, J. & Kahrl, F. & Wang, J. & Horowitz, I., 2014. "A review of electricity product differentiation," Applied Energy, Elsevier, vol. 114(C), pages 262-272.
    9. Jinah Yang & Daiki Min & Jeenyoung Kim, 2020. "The Use of Big Data and Its Effects in a Diffusion Forecasting Model for Korean Reverse Mortgage Subscribers," Sustainability, MDPI, vol. 12(3), pages 1-17, January.
    10. van Blommestein, Kevin & Daim, Tugrul U. & Cho, Yonghee & Sklar, Paul, 2018. "Structuring financial incentives for residential solar electric systems," Renewable Energy, Elsevier, vol. 115(C), pages 28-40.
    11. He, Yongxiu & Wang, Bing & Wang, Jianhui & Xiong, Wei & Xia, Tian, 2012. "Residential demand response behavior analysis based on Monte Carlo simulation: The case of Yinchuan in China," Energy, Elsevier, vol. 47(1), pages 230-236.
    12. Vallés, Mercedes & Bello, Antonio & Reneses, Javier & Frías, Pablo, 2018. "Probabilistic characterization of electricity consumer responsiveness to economic incentives," Applied Energy, Elsevier, vol. 216(C), pages 296-310.
    13. Eri Nakamura & Fumitoshi Mizutani, 2019. "Necessary demand and extra demand of public utility product: identification using the stochastic frontier model," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 46(1), pages 45-64, March.
    14. Mariusz Izdebski & Marianna Jacyna, 2021. "An Efficient Hybrid Algorithm for Energy Expenditure Estimation for Electric Vehicles in Urban Service Enterprises," Energies, MDPI, vol. 14(7), pages 1-23, April.
    15. T. Marshalkina V. & Т. Маршалкина В., 2015. "Модели Прогнозирования Спроса На Инновационную Продукцию // Models For Innovative Products Demand," Финансы: теория и практика/Finance: Theory and Practice // Finance: Theory and Practice, ФГОБУВО Финансовый университет при Правительстве Российской Федерации // Financial University under The Government of Russian Federation, issue 6, pages 171-178.
    16. Trichy V. Krishnan & Dipak C. Jain, 2006. "Optimal Dynamic Advertising Policy for New Products," Management Science, INFORMS, vol. 52(12), pages 1957-1969, December.
    17. Jieyi Kang & David Reiner, 2021. "Machine Learning on residential electricity consumption: Which households are more responsive to weather?," Working Papers EPRG2113, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    18. Wang, Yong & Li, Lin, 2015. "Time-of-use electricity pricing for industrial customers: A survey of U.S. utilities," Applied Energy, Elsevier, vol. 149(C), pages 89-103.
    19. Cl'emence Alasseur & Ivar Ekeland & Romuald Elie & Nicol'as Hern'andez Santib'a~nez & Dylan Possamai, 2017. "An adverse selection approach to power pricing," Papers 1706.01934, arXiv.org, revised Sep 2019.
    20. Katz, Jonas & Andersen, Frits Møller & Morthorst, Poul Erik, 2016. "Load-shift incentives for household demand response: Evaluation of hourly dynamic pricing and rebate schemes in a wind-based electricity system," Energy, Elsevier, vol. 115(P3), pages 1602-1616.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:74:y:2014:i:c:p:455-463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.