IDEAS home Printed from https://ideas.repec.org/p/kbb/dpaper/2015-02.html
   My bibliography  Save this paper

The Effect of Demand Response on Electricity Consumption in Japan

Author

Listed:
  • Fumitoshi Mizutani

    (Graduate School of Business Administration, Kobe University)

  • Takuro Tanaka

    (Graduate School of Economics, Kobe University)

  • Eri Nakamura

    (Graduate School of Business Administration, Kobe University)

Abstract

The main purpose of this study is to investigate, by using regressions analysis, the DR effect on households' electricity consumption. We employ three kinds of estimation models: a pooled OLS model, a random effect model, and a fixed effect model. Major results are as follows. First, the DR scheme clearly reduces electricity consumption. As the peak-time price of electricity increases by 20 yen/kWh in the form of TOU and CPP, electricity consumption decreases by about 8.1% at sample mean. However, consumption after DR tends to increase, most likely due to the rebound effect. Second, the reduction effects of the DR scheme can be strengthened as households' income becomes higher. In contrast, as more people stay at home during the daytime and the temperature rises, the reduction effects of the DR scheme may become weaker. Third, electricity price, household characteristics, and external conditions are significant factors affecting electricity consumption. Fourth, the effects of some DR schemes such as requests to save electricity, TOU, and CPP, can differ largely according to household characteristics and external conditions.

Suggested Citation

  • Fumitoshi Mizutani & Takuro Tanaka & Eri Nakamura, 2015. "The Effect of Demand Response on Electricity Consumption in Japan," Discussion Papers 2015-02, Kobe University, Graduate School of Business Administration.
  • Handle: RePEc:kbb:dpaper:2015-02
    as

    Download full text from publisher

    File URL: https://www.b.kobe-u.ac.jp/papers_files/2015_02.pdf
    File Function: First version, 2015
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmad Faruqui & Sanem Sergici, 2011. "Dynamic pricing of electricity in the mid-Atlantic region: econometric results from the Baltimore gas and electric company experiment," Journal of Regulatory Economics, Springer, vol. 40(1), pages 82-109, August.
    2. Herter, Karen & Wayland, Seth, 2010. "Residential response to critical-peak pricing of electricity: California evidence," Energy, Elsevier, vol. 35(4), pages 1561-1567.
    3. Katrina Jessoe & David Rapson, 2014. "Knowledge Is (Less) Power: Experimental Evidence from Residential Energy Use," American Economic Review, American Economic Association, vol. 104(4), pages 1417-1438, April.
    4. Paul L. Joskow & Catherine D. Wolfram, 2012. "Dynamic Pricing of Electricity," American Economic Review, American Economic Association, vol. 102(3), pages 381-385, May.
    5. Faruqui, Ahmad & George, Stephen, 2005. "Quantifying Customer Response to Dynamic Pricing," The Electricity Journal, Elsevier, vol. 18(4), pages 53-63, May.
    6. Cappers, Peter & Goldman, Charles & Kathan, David, 2010. "Demand response in U.S. electricity markets: Empirical evidence," Energy, Elsevier, vol. 35(4), pages 1526-1535.
    7. Ahmad Faruqui, Sanem Sergici, and Lamine Akaba, 2014. "The Impact of Dynamic Pricing on Residential and Small Commercial and Industrial Usage: New Experimental Evidence from Connecticut," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    8. Herter, Karen & McAuliffe, Patrick & Rosenfeld, Arthur, 2007. "An exploratory analysis of California residential customer response to critical peak pricing of electricity," Energy, Elsevier, vol. 32(1), pages 25-34.
    9. Herter, Karen, 2007. "Residential implementation of critical-peak pricing of electricity," Energy Policy, Elsevier, vol. 35(4), pages 2121-2130, April.
    10. Hung-po Chao & Mario DePillis, 2013. "Incentive effects of paying demand response in wholesale electricity markets," Journal of Regulatory Economics, Springer, vol. 43(3), pages 265-283, June.
    11. Ahmad Faruqui & Sanem Sergici, 2010. "Household response to dynamic pricing of electricity: a survey of 15 experiments," Journal of Regulatory Economics, Springer, vol. 38(2), pages 193-225, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takanori Ida & Wenjie Wang, 2014. "A Field Experiment on Dynamic Electricity Pricing in Los Alamos:Opt-in Versus Opt-out," Discussion papers e-14-010, Graduate School of Economics Project Center, Kyoto University.
    2. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    3. Wang, Yong & Li, Lin, 2016. "Critical peak electricity pricing for sustainable manufacturing: Modeling and case studies," Applied Energy, Elsevier, vol. 175(C), pages 40-53.
    4. Fumitoshi Mizutani & Eri Nakamura, 2015. "An Analysis of Household Electricity Saving Behavior Using the Stochastic Frontier Function," Discussion Papers 2015-10, Kobe University, Graduate School of Business Administration.
    5. Faruqui, Ahmad & Sergici, Sanem & Lessem, Neil & Mountain, Dean, 2015. "Impact measurement of tariff changes when experimentation is not an option—A case study of Ontario, Canada," Energy Economics, Elsevier, vol. 52(PA), pages 39-48.
    6. He, Yongxiu & Wang, Bing & Wang, Jianhui & Xiong, Wei & Xia, Tian, 2012. "Residential demand response behavior analysis based on Monte Carlo simulation: The case of Yinchuan in China," Energy, Elsevier, vol. 47(1), pages 230-236.
    7. Ren'e Aid & Dylan Possamai & Nizar Touzi, 2018. "Optimal electricity demand response contracting with responsiveness incentives," Papers 1810.09063, arXiv.org, revised May 2019.
    8. Eri Nakamura & Fumitoshi Mizutani, 2019. "Necessary demand and extra demand of public utility product: identification using the stochastic frontier model," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 46(1), pages 45-64, March.
    9. Wang, Yong & Li, Lin, 2015. "Time-of-use electricity pricing for industrial customers: A survey of U.S. utilities," Applied Energy, Elsevier, vol. 149(C), pages 89-103.
    10. Makena Coffman & Paul Bernstein & Derek Stenclik & Sherilyn Wee & Aida Arik, 2018. "Integrating Renewable Energy with Time Varying Pricing," Working Papers 2018-6, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    11. Yang, Liu & Dong, Ciwei & Wan, C.L. Johnny & Ng, Chi To, 2013. "Electricity time-of-use tariff with consumer behavior consideration," International Journal of Production Economics, Elsevier, vol. 146(2), pages 402-410.
    12. Yu, Yihua & Guo, Jin, 2016. "Identifying electricity-saving potential in rural China: Empirical evidence from a household survey," Energy Policy, Elsevier, vol. 94(C), pages 1-9.
    13. Guo, Peiyang & Li, Victor O.K. & Lam, Jacqueline C.K., 2017. "Smart demand response in China: Challenges and drivers," Energy Policy, Elsevier, vol. 107(C), pages 1-10.
    14. Heshmati, Almas, 2012. "Survey of Models on Demand, Customer Base-Line and Demand Response and Their Relationships in the Power Market," IZA Discussion Papers 6637, Institute of Labor Economics (IZA).
    15. Almas Heshmati, 2014. "Demand, Customer Base-Line And Demand Response In The Electricity Market: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 862-888, December.
    16. Strong, Derek Ryan, 2017. "The Early Diffusion of Smart Meters in the US Electric Power Industry," Thesis Commons 7zprk, Center for Open Science.
    17. Michael K. Price, 2014. "Using field experiments to address environmental externalities and resource scarcity: major lessons learned and new directions for future research," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 30(4), pages 621-638.
    18. Ahmad Faruqui, Sanem Sergici, and Lamine Akaba, 2014. "The Impact of Dynamic Pricing on Residential and Small Commercial and Industrial Usage: New Experimental Evidence from Connecticut," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    19. Bryan K. Bollinger & Wesley R. Hartmann, 2020. "Information vs. Automation and Implications for Dynamic Pricing," Management Science, INFORMS, vol. 66(1), pages 290-314, January.
    20. Vallés, Mercedes & Bello, Antonio & Reneses, Javier & Frías, Pablo, 2018. "Probabilistic characterization of electricity consumer responsiveness to economic incentives," Applied Energy, Elsevier, vol. 216(C), pages 296-310.

    More about this item

    Keywords

    Demand Response; Electricity Consumption; Time of Use; Critical Peak Pricing;
    All these keywords.

    JEL classification:

    • L4 - Industrial Organization - - Antitrust Issues and Policies
    • L5 - Industrial Organization - - Regulation and Industrial Policy
    • L9 - Industrial Organization - - Industry Studies: Transportation and Utilities

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kbb:dpaper:2015-02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Yasuyuki Miyahara (email available below). General contact details of provider: https://edirc.repec.org/data/bskobjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.