IDEAS home Printed from https://ideas.repec.org/a/scn/financ/y2015i6p171-178.html
   My bibliography  Save this article

Модели Прогнозирования Спроса На Инновационную Продукцию // Models For Innovative Products Demand

Author

Listed:
  • T. Marshalkina V.

    (Financial University)

  • Т. Маршалкина В.

    (Финансовый университет)

Abstract

The importance of innovation nowadays can’t be overestimated. The introduction of innovations in usual life goes through the innovative projects, which are includes the stage of research, development, production and market realization. Like any other commercial project, the innovative project must be cost-effective in the long run to pay off and make a profit. However, the calculation of potential profits from an innovative product or service remains the most unexplored area in the innovative projects assessment. This factor makes the topic of this article particularly urgent. This article examines different approaches to assess the demand for innovation in the evaluation of innovative projects. The article provides arguments in favor of S-form of curve of innovative product adoption. Consistently discusses the stages of the model modification by adding the factors of price, advertising, market potential. Explores the advantages and disadvantages of different methods for determining Bass model parameters. It is concluded that model is practical applicable in the management of innovation projects. Значимость инноваций в современном мире трудно переоценить. Внедрение их в жизнь обычно проходит через инновационные проекты, включающие стадии исследований, разработок, производства и вывода на рынок. Как и любой другой коммерческий проект, инновационный проект должен быть экономически эффективным, в конечном счете окупиться и принести прибыль. Однако расчет потенциальной прибыли от инновационного продукта или услуги остается наиболее не изученной сферой в оценке инновационных проектов. Данный фактор делает особенно актуальной тему статьи, в которой рассматриваются различные подходы к оценке спроса на инновации в рамках оценки инновационных проектов. В статье изучается модель Басса для моделирования и прогнозирования распространения инновационных продуктов, а также процесс развития модели; приводятся аргументы в пользу S-вида кривой накопленного «принятия», т.е. покупки инновационного продукта; автором предлагаются модификации модели с добавлением в нее факторов цены, рекламы, рыночного потенциала; исследуются преимущества и недостатки различных методов определения параметров модели Басса. Делается вывод о практической применимости модели оценки спроса на инновации в оценке инновационных проектов.

Suggested Citation

  • T. Marshalkina V. & Т. Маршалкина В., 2015. "Модели Прогнозирования Спроса На Инновационную Продукцию // Models For Innovative Products Demand," Финансы: теория и практика/Finance: Theory and Practice // Finance: Theory and Practice, ФГОБУВО Финансовый университет при Правительстве Российской Федерации // Financial University under The Government of Russian Federation, issue 6, pages 171-178.
  • Handle: RePEc:scn:financ:y:2015:i:6:p:171-178
    as

    Download full text from publisher

    File URL: https://financetp.fa.ru/jour/article/viewFile/560/431.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Raghuram Iyengar & Christophe Van den Bulte & Thomas W. Valente, 2011. "Opinion Leadership and Social Contagion in New Product Diffusion," Marketing Science, INFORMS, vol. 30(2), pages 195-212, 03-04.
    2. Frank M. Bass & Trichy V. Krishnan & Dipak C. Jain, 1994. "Why the Bass Model Fits without Decision Variables," Marketing Science, INFORMS, vol. 13(3), pages 203-223.
    3. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    4. Christophe Van den Bulte & Stefan Stremersch, 2004. "Social Contagion and Income Heterogeneity in New Product Diffusion: A Meta-Analytic Test," Marketing Science, INFORMS, vol. 23(4), pages 530-544, July.
    5. Dan Horsky & Leonard S. Simon, 1983. "Advertising and the Diffusion of New Products," Marketing Science, INFORMS, vol. 2(1), pages 1-17.
    6. Fruchter, Gila E. & Van den Bulte, Christophe, 2011. "Why the Generalized Bass Model leads to odd optimal advertising policies," International Journal of Research in Marketing, Elsevier, vol. 28(3), pages 218-230.
    7. Xiaoying Liang & Lei Xie & Houmin Yan, 2015. "Self‐Restraining Bass Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(6), pages 472-477, September.
    8. Bonus, Holger, 1973. "Quasi-Engel Curves, Diffusion, and the Ownership of Major Consumer Durables," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 655-677, May-June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laciana, Carlos E. & Rovere, Santiago L. & Podestá, Guillermo P., 2013. "Exploring associations between micro-level models of innovation diffusion and emerging macro-level adoption patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1873-1884.
    2. Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
    3. Hariharan, Vijay Ganesh & Talukdar, Debabrata & Kwon, Changhyun, 2015. "Optimal targeting of advertisement for new products with multiple consumer segments," International Journal of Research in Marketing, Elsevier, vol. 32(3), pages 263-271.
    4. Barnes, Belinda & Southwell, Darren & Bruce, Sarah & Woodhams, Felicity, 2014. "Additionality, common practice and incentive schemes for the uptake of innovations," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 43-61.
    5. Olivier Toubia & Jacob Goldenberg & Rosanna Garcia, 2014. "Improving Penetration Forecasts Using Social Interactions Data," Management Science, INFORMS, vol. 60(12), pages 3049-3066, December.
    6. Dong, Changgui & Sigrin, Benjamin & Brinkman, Gregory, 2017. "Forecasting residential solar photovoltaic deployment in California," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 251-265.
    7. Dragan Lazarević & Libor Švadlenka & Valentina Radojičić & Momčilo Dobrodolac, 2020. "New Express Delivery Service and Its Impact on CO 2 Emissions," Sustainability, MDPI, vol. 12(2), pages 1-29, January.
    8. Fruchter, Gila E. & Van den Bulte, Christophe, 2011. "Why the Generalized Bass Model leads to odd optimal advertising policies," International Journal of Research in Marketing, Elsevier, vol. 28(3), pages 218-230.
    9. Elena Anatol’evna Derunova & Irina Nikolayevna Filatova & Alexandr Sergeevich Semenov & Vladimir Alexandrovich Derunov, 2017. "Investigation of Various Prediction Models of Demand on the Market of Innovations," International Review of Management and Marketing, Econjournals, vol. 7(1), pages 112-118.
    10. Vahideh Sadat Abedi & Oded Berman & Fred M. Feinberg & Dmitry Krass, 2022. "Strategic new product media planning under emergent channel substitution and synergy," Production and Operations Management, Production and Operations Management Society, vol. 31(5), pages 2143-2166, May.
    11. Elmar Kiesling & Markus Günther & Christian Stummer & Lea Wakolbinger, 2012. "Agent-based simulation of innovation diffusion: a review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(2), pages 183-230, June.
    12. Krishnan, Trichy V. & Feng, Shanfei & Jain, Dipak C., 2023. "Peak sales time prediction in new product sales: Can a product manager rely on it?," Journal of Business Research, Elsevier, vol. 165(C).
    13. Brito, Thiago Luis Felipe & Islam, Towhidul & Stettler, Marc & Mouette, Dominique & Meade, Nigel & Moutinho dos Santos, Edmilson, 2019. "Transitions between technological generations of alternative fuel vehicles in Brazil," Energy Policy, Elsevier, vol. 134(C).
    14. Ruiz-Conde, Enar & Wieringa, Jaap E. & Leeflang, Peter S.H., 2014. "Competitive diffusion of new prescription drugs: The role of pharmaceutical marketing investment," Technological Forecasting and Social Change, Elsevier, vol. 88(C), pages 49-63.
    15. Peters, Kay & Albers, Sönke & Kumar, V., 2008. "Is there more to international Diffusion than Culture? An investigation on the Role of Marketing and Industry Variables," EconStor Preprints 27678, ZBW - Leibniz Information Centre for Economics.
    16. Abedi, Vahideh Sadat, 2019. "Compartmental diffusion modeling: Describing customer heterogeneity & communication network to support decisions for new product introductions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    17. Krishnan, Trichy V. & Seetharaman, P.B. “Seethu” & Vakratsas, Demetrios, 2012. "The multiple roles of interpersonal communication in new product growth," International Journal of Research in Marketing, Elsevier, vol. 29(3), pages 292-305.
    18. Trichy V. Krishnan & Dipak C. Jain, 2006. "Optimal Dynamic Advertising Policy for New Products," Management Science, INFORMS, vol. 52(12), pages 1957-1969, December.
    19. Xu, Mei & Xie, Pu & Xie, Bai-Chen, 2020. "Study of China's optimal solar photovoltaic power development path to 2050," Resources Policy, Elsevier, vol. 65(C).
    20. Martin Hewing, 2012. "A Theoretical and Empirical Comparison of Innovation Diffusion Models Applying Data from the Software Industry," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 3(2), pages 125-141, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:scn:financ:y:2015:i:6:p:171-178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Алексей Скалабан (email available below). General contact details of provider: http://financetp.fa.ru .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.