IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v55y2013icp378-391.html
   My bibliography  Save this article

Optimal use of hybrid feedstock, switchgrass and shale gas for the simultaneous production of hydrogen and liquid fuels

Author

Listed:
  • Martín, Mariano
  • Grossmann, Ignacio E.

Abstract

In this paper, we present a superstructure optimization approach for the integration of the simultaneous production of liquid fuels and hydrogen from switchgrass and shale gas. The process is based on Fischer-Tropsch technology in which the shale gas is reformed with steam, while the switchgrass is gasified and reformed (with steam or partial oxidation). The raw gas is cleaned up and its composition may be adjusted (using either water gas shift reaction or pressure swift adsorption). Next, the sour gases are removed before the liquid fuels are produced using an FT reactor. The heavy liquids are upgraded using hydrocracking to increase the yield towards FT-diesel. A sensitivity study on the raw material prices reveals that production costs for the biomass-shale gas facility are below $1/gal as long as biomass price is below $100/t and the price of the shale gas is not higher than $11.5/MMBTU. Furthermore, hydrogen is produced as long as the demand for liquid fuels can be met and there is enough shale gas available.

Suggested Citation

  • Martín, Mariano & Grossmann, Ignacio E., 2013. "Optimal use of hybrid feedstock, switchgrass and shale gas for the simultaneous production of hydrogen and liquid fuels," Energy, Elsevier, vol. 55(C), pages 378-391.
  • Handle: RePEc:eee:energy:v:55:y:2013:i:c:p:378-391
    DOI: 10.1016/j.energy.2013.04.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213003058
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.04.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mooney, Daniel F. & Roberts, Roland K. & English, Burton C. & Tyler, Donald D. & Larson, James A., 2008. "Switchgrass Production in Marginal Environments: A Comparative Economic Analysis across Four West Tennessee Landscapes," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6403, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Yang & Zhang, Qiao & Yu, Haoshui & Feng, Xiao, 2021. "Tech-economic and environmental analysis of energy-efficient shale gas and flue gas coupling system for chemicals manufacture and carbon capture storage and utilization," Energy, Elsevier, vol. 217(C).
    2. Tan, Siah Hong & Barton, Paul I., 2017. "Optimal shale oil and gas investments in the United States," Energy, Elsevier, vol. 141(C), pages 398-422.
    3. Zhong, Dong-Liang & Li, Zheng & Lu, Yi-Yu & Wang, Jia-Le & Yan, Jin, 2015. "Evaluation of CO2 removal from a CO2+CH4 gas mixture using gas hydrate formation in liquid water and THF solutions," Applied Energy, Elsevier, vol. 158(C), pages 133-141.
    4. Subramanian, Avinash S.R. & Gundersen, Truls & Barton, Paul I. & Adams, Thomas A., 2022. "Global optimization of a hybrid waste tire and natural gas feedstock polygeneration system," Energy, Elsevier, vol. 250(C).
    5. Davis, William & Martín, Mariano, 2014. "Optimal year-round operation for methane production from CO2 and water using wind energy," Energy, Elsevier, vol. 69(C), pages 497-505.
    6. Tan, Siah Hong & Barton, Paul I., 2015. "Optimal dynamic allocation of mobile plants to monetize associated or stranded natural gas, part I: Bakken shale play case study," Energy, Elsevier, vol. 93(P2), pages 1581-1594.
    7. Li, Fang & Arthur, Ernest Evans & La, Dahye & Li, Qiming & Kim, Hern, 2014. "Immobilization of CoCl2 (cobalt chloride) on PAN (polyacrylonitrile) composite nanofiber mesh filled with carbon nanotubes for hydrogen production from hydrolysis of NaBH4 (sodium borohydride)," Energy, Elsevier, vol. 71(C), pages 32-39.
    8. Deng, Chun & Zhou, Yuhang & Chen, Cheng-Liang & Feng, Xiao, 2015. "Systematic approach for targeting interplant hydrogen networks," Energy, Elsevier, vol. 90(P1), pages 68-88.
    9. Sharma, Ashokkumar M. & Kumar, Ajay & Madihally, Sundararajan & Whiteley, James R. & Huhnke, Raymond L., 2014. "Prediction of biomass-generated syngas using extents of major reactions in a continuous stirred-tank reactor," Energy, Elsevier, vol. 72(C), pages 222-232.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tumusiime, Emmanuel & B. Wade, Brorsen & Mosali, Jagadeesh & Johnson, Jim & Locke, James & Biermacher, Jon T., 2011. "Determining Optimal Levels of Nitrogen Fertilizer Using Random Parameter Models," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 43(4), pages 541-552, November.
    2. Haque, Mohua & Biermacher, Jon T. & Kering, Maru K. & Guretzky, John A., 2012. "Managing Nitrogen and Phosphorus Nutrients for Switchgrass Produced for Bioenergy Feedstock in Phosphorus-Deficient Soil," 2012 Annual Meeting, February 4-7, 2012, Birmingham, Alabama 119765, Southern Agricultural Economics Association.
    3. Wu, Jy S. & Tseng, Hui-Kuan & Liu, Xiaoshuai, 2022. "Techno-economic assessment of bioenergy potential on marginal croplands in the U.S. southeast," Energy Policy, Elsevier, vol. 170(C).
    4. Griffith, Andrew P. & Larson, James A. & English, Burton C. & McLemore, Dan L., 2009. "Stochastic Dominance Analysis of Bioenergy Crops as a Production Alternative on an East Tennessee Beef and Crop Farm," 2009 Annual Meeting, January 31-February 3, 2009, Atlanta, Georgia 46811, Southern Agricultural Economics Association.
    5. Larson, James A., 2008. "Risk and uncertainty at the farm level," Risk, Infrastructure and Industry Evolution Conference, June 24-25, 2008, Berkeley, California 48728, Farm Foundation.
    6. Epplin, Francis M. & Haque, Mohua, 2011. "Policies to Facilitate Conversion of Millions of Acres to the Production of Biofuel Feedstock," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 43(3), pages 385-398, August.
    7. Sharp, Benjamin E. & Miller, Shelie A., 2014. "Estimating maximum land use change potential from a regional biofuel industry," Energy Policy, Elsevier, vol. 65(C), pages 261-269.
    8. Wang, Chenguang & Larson, James A. & English, Burton C. & Jensen, Kimberly L., 2009. "Cost Analysis of Alternative Harvest, Storage and Transportation Methods for Delivering Switchgrass to a Biorefinery from the Farmers’ perspective," 2009 Annual Meeting, January 31-February 3, 2009, Atlanta, Georgia 47169, Southern Agricultural Economics Association.
    9. Kumarappan, Subbu & Joshi, Satish V., 2012. "Optimal biomass-harvesting model for biobutanol biorefineries," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124717, Agricultural and Applied Economics Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:55:y:2013:i:c:p:378-391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.