IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v15y2011i6p3319-3325.html
   My bibliography  Save this article

History of the solar ponds: A review study

Author

Listed:
  • El-Sebaii, A.A.
  • Ramadan, M.R.I.
  • Aboul-Enein, S.
  • Khallaf, A.M.

Abstract

Solar pond was discovered as a natural phenomena around the turn of the last century in the Medve Lake in Transylvania in Hungary. In this lake, temperatures up to 70 °C were recorded at a depth of 1.32 m at the end of the summer season. The minimal temperature was 26 °C during early spring. The bottom of this lake had a salt NaCl with concentration of 26 percent. Solar pond is artificially constructed. To prevent convection, salt water is used in the pond. Those ponds are called "salt gradient solar pond". Nowadays, mini solar ponds are also being constructed for various thermal applications. It was concluded that the optimum value of salinity in the mini solar pond is 80 g/kg of water.

Suggested Citation

  • El-Sebaii, A.A. & Ramadan, M.R.I. & Aboul-Enein, S. & Khallaf, A.M., 2011. "History of the solar ponds: A review study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3319-3325, August.
  • Handle: RePEc:eee:rensus:v:15:y:2011:i:6:p:3319-3325
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032111001456
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ouni, M. & Guizani, A. & Belguith, A., 1998. "Simulation of the transient behaviour of a salt gradient solar pond in Tunisia," Renewable Energy, Elsevier, vol. 14(1), pages 69-76.
    2. Ould Dah, M.M. & Ouni, M. & Guizani, A. & Belghith, A., 2010. "The influence of the heat extraction mode on the performance and stability of a mini solar pond," Applied Energy, Elsevier, vol. 87(10), pages 3005-3010, October.
    3. Aboul-Enein, S. & El-Sebaii, A. A. & Ramadan, M. R. I. & Khallaf, A. M., 2004. "Parametric study of a shallow solar-pond under the batch mode of heat extraction," Applied Energy, Elsevier, vol. 78(2), pages 159-177, June.
    4. El-Sebaii, A.A., 2005. "Thermal performance of a shallow solar-pond integrated with a baffle plate," Applied Energy, Elsevier, vol. 81(1), pages 33-53, May.
    5. Kamiuto, K. & Oda, T., 1991. "Thermal performance of a shallow solar-pond water heater with semitransparent, multilayer surface insulation," Energy, Elsevier, vol. 16(10), pages 1239-1245.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ranjan, K.R. & Kaushik, S.C., 2014. "Thermodynamic and economic feasibility of solar ponds for various thermal applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 123-139.
    2. Ziapour, Behrooz M. & Shokrnia, Mehdi & Naseri, Mohammad, 2016. "Comparatively study between single-phase and two-phase modes of energy extraction in a salinity-gradient solar pond power plant," Energy, Elsevier, vol. 111(C), pages 126-136.
    3. Elsarrag, Esam & Igobo, Opubo N. & Alhorr, Yousef & Davies, Philip A., 2016. "Solar pond powered liquid desiccant evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 124-140.
    4. Ding, L.C. & Akbarzadeh, A. & Tan, L., 2018. "A review of power generation with thermoelectric system and its alternative with solar ponds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 799-812.
    5. Gude, Veera Gnaneswar, 2015. "Energy storage for desalination processes powered by renewable energy and waste heat sources," Applied Energy, Elsevier, vol. 137(C), pages 877-898.
    6. Salata, F. & Coppi, M., 2014. "A first approach study on the desalination of sea water using heat transformers powered by solar ponds," Applied Energy, Elsevier, vol. 136(C), pages 611-618.
    7. Meng, Zhaoguo & Li, Zhenlin & Li, Yang & Zhang, Canying & Wang, Kongxiang & Yu, Wei & Wu, Daxiong & Zhu, Haitao & Li, Wei, 2022. "Novel nanofluid based efficient solar vaporization systems with applications in desalination and wastewater treatment," Energy, Elsevier, vol. 247(C).
    8. Amigo, José & Suárez, Francisco, 2018. "Ground heat storage beneath salt-gradient solar ponds under constant heat demand," Energy, Elsevier, vol. 144(C), pages 657-668.
    9. Anagnostopoulos, Argyrios & Sebastia-Saez, Daniel & Campbell, Alasdair N. & Arellano-Garcia, Harvey, 2020. "Finite element modelling of the thermal performance of salinity gradient solar ponds," Energy, Elsevier, vol. 203(C).
    10. Aikifa Raza & Jin-You Lu & Safa Alzaim & Hongxia Li & TieJun Zhang, 2018. "Novel Receiver-Enhanced Solar Vapor Generation: Review and Perspectives," Energies, MDPI, vol. 11(1), pages 1-29, January.
    11. Suárez, Francisco & Ruskowitz, Jeffrey A. & Childress, Amy E. & Tyler, Scott W., 2014. "Understanding the expected performance of large-scale solar ponds from laboratory-scale observations and numerical modeling," Applied Energy, Elsevier, vol. 117(C), pages 1-10.
    12. Yassmine Rghif & Daniele Colarossi & Paolo Principi, 2023. "Effects of Double-Diffusive Convection on Calculation Time and Accuracy Results of a Salt Gradient Solar Pond: Numerical Investigation and Experimental Validation," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    13. Khalilian, Morteza & Pourmokhtar, Hamed & Roshan, Ashkan, 2018. "Effect of heat extraction mode on the overall energy and exergy efficiencies of the solar ponds: A transient study," Energy, Elsevier, vol. 154(C), pages 27-37.
    14. Al-Nimr, Moh'd A. & Al-Dafaie, Ameer Mohammed Abbas, 2014. "Using nanofluids in enhancing the performance of a novel two-layer solar pond," Energy, Elsevier, vol. 68(C), pages 318-326.
    15. Hussain, C.M. Iftekhar & Norton, Brian & Duffy, Aidan, 2017. "Technological assessment of different solar-biomass systems for hybrid power generation in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1115-1129.
    16. Amigo, José & Meza, Francisco & Suárez, Francisco, 2017. "A transient model for temperature prediction in a salt-gradient solar pond and the ground beneath it," Energy, Elsevier, vol. 132(C), pages 257-268.
    17. Amponsah, Nana Yaw & Troldborg, Mads & Kington, Bethany & Aalders, Inge & Hough, Rupert Lloyd, 2014. "Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 461-475.
    18. Liu, Chao & Hashemian, Mehran & Shawabkeh, Ali & Dizaji, Hamed Sadighi & Saleem, S. & Mohideen Batcha, Mohd Faizal & Wae-hayee, Makatar, 2021. "CFD-based irreversibility analysis of avant-garde semi-O/O-shape grooving fashions of solar pond heat trade-off unit," Renewable Energy, Elsevier, vol. 171(C), pages 328-343.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, L.C. & Akbarzadeh, A. & Tan, L., 2018. "A review of power generation with thermoelectric system and its alternative with solar ponds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 799-812.
    2. Velmurugan, V. & Srithar, K., 2008. "Prospects and scopes of solar pond: A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(8), pages 2253-2263, October.
    3. Ganguly, Sayantan & Date, Abhijit & Akbarzadeh, Aliakbar, 2019. "On increasing the thermal mass of a salinity gradient solar pond with external heat addition: A transient study," Energy, Elsevier, vol. 168(C), pages 43-56.
    4. Ruth M. Saint & Céline Garnier & Francesco Pomponi & John Currie, 2018. "Thermal Performance through Heat Retention in Integrated Collector-Storage Solar Water Heaters: A Review," Energies, MDPI, vol. 11(6), pages 1-26, June.
    5. Suárez, Francisco & Ruskowitz, Jeffrey A. & Childress, Amy E. & Tyler, Scott W., 2014. "Understanding the expected performance of large-scale solar ponds from laboratory-scale observations and numerical modeling," Applied Energy, Elsevier, vol. 117(C), pages 1-10.
    6. Garnier, Celine & Muneer, Tariq & Currie, John, 2018. "Numerical and empirical evaluation of a novel building integrated collector storage solar water heater," Renewable Energy, Elsevier, vol. 126(C), pages 281-295.
    7. Ranjan, K.R. & Kaushik, S.C., 2014. "Thermodynamic and economic feasibility of solar ponds for various thermal applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 123-139.
    8. Kumar, Naveen & Chavda, Tilak & Mistry, H.N., 2010. "A truncated pyramid non-tracking type multipurpose domestic solar cooker/hot water system," Applied Energy, Elsevier, vol. 87(2), pages 471-477, February.
    9. Khalilian, Morteza & Pourmokhtar, Hamed & Roshan, Ashkan, 2018. "Effect of heat extraction mode on the overall energy and exergy efficiencies of the solar ponds: A transient study," Energy, Elsevier, vol. 154(C), pages 27-37.
    10. Benjemaa, F & Houcine, I & Chahbani, M.H, 1999. "Potential of renewable energy development for water desalination in Tunisia," Renewable Energy, Elsevier, vol. 18(3), pages 331-347.
    11. Ould Dah, M.M. & Ouni, M. & Guizani, A. & Belghith, A., 2010. "The influence of the heat extraction mode on the performance and stability of a mini solar pond," Applied Energy, Elsevier, vol. 87(10), pages 3005-3010, October.
    12. Shi, Yufeng & Yin, Fang & Shi, Lihua & Wence, Sun & Li, Nan & Liu, Hong, 2011. "Effects of porous media on thermal and salt diffusion of solar pond," Applied Energy, Elsevier, vol. 88(7), pages 2445-2453, July.
    13. Ridha Boudhiaf & Ali Ben Moussa & Mounir Baccar, 2012. "A Two-Dimensional Numerical Study of Hydrodynamic, Heat and Mass Transfer and Stability in a Salt Gradient Solar Pond," Energies, MDPI, vol. 5(10), pages 1-22, October.
    14. Kamiuto, K. & Wang, X., 1997. "Transient thermal characteristics of a solar tank with transparent film, multilayer surface insulation," Renewable Energy, Elsevier, vol. 11(1), pages 15-24.
    15. Ferdinando Salata & Anna Tarsitano & Iacopo Golasi & Emanuele De Lieto Vollaro & Massimo Coppi & Andrea De Lieto Vollaro, 2016. "Application of Absorption Systems Powered by Solar Ponds in Warm Climates for the Air Conditioning in Residential Buildings," Energies, MDPI, vol. 9(10), pages 1-18, October.
    16. El-Sebaii, A.A., 2005. "Thermal performance of a shallow solar-pond integrated with a baffle plate," Applied Energy, Elsevier, vol. 81(1), pages 33-53, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:15:y:2011:i:6:p:3319-3325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.