IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v58y2013icp448-457.html
   My bibliography  Save this article

Energy and exergy analyses of a bottoming Rankine cycle for engine exhaust heat recovery

Author

Listed:
  • Zhu, Sipeng
  • Deng, Kangyao
  • Qu, Shuan

Abstract

In this paper, a theoretical study on the thermodynamic processes of a bottoming Rankine cycle for engine waste heat recovery is conducted from the viewpoints of energy balance and exergy balance. A theoretical formula and an exergy distribution map for qualitative analyses of the main operating parameters are presented under simplified conditions when exhaust gas is selected as the only heat source. Five typical working fluids, which are always selected by manufacturers for different types of engines, are compared under various operating conditions in Matlab software. The results show that working fluid properties, evaporating pressure and superheating temperature are the main factors influencing the system design and performances. The global recovery efficiency does not exceed 0.14 under typical operating conditions. Ethanol and R113 show better thermodynamic performances in the whole exhaust gas temperature range. In addition, the optimal evaporating pressure usually does not exist in engine exhaust heat recovery, and the distributions of exergy destruction are varied with working fluid categories and system design constraints.

Suggested Citation

  • Zhu, Sipeng & Deng, Kangyao & Qu, Shuan, 2013. "Energy and exergy analyses of a bottoming Rankine cycle for engine exhaust heat recovery," Energy, Elsevier, vol. 58(C), pages 448-457.
  • Handle: RePEc:eee:energy:v:58:y:2013:i:c:p:448-457
    DOI: 10.1016/j.energy.2013.06.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421300529X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.06.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Tianyou & Zhang, Yajun & Peng, Zhijun & Shu, Gequn, 2011. "A review of researches on thermal exhaust heat recovery with Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2862-2871, August.
    2. Domingues, António & Santos, Helder & Costa, Mário, 2013. "Analysis of vehicle exhaust waste heat recovery potential using a Rankine cycle," Energy, Elsevier, vol. 49(C), pages 71-85.
    3. Rakopoulos, C.D. & Michos, C.N. & Giakoumis, E.G., 2008. "Availability analysis of a syngas fueled spark ignition engine using a multi-zone combustion model," Energy, Elsevier, vol. 33(9), pages 1378-1398.
    4. Saidur, R. & Rezaei, M. & Muzammil, W.K. & Hassan, M.H. & Paria, S. & Hasanuzzaman, M., 2012. "Technologies to recover exhaust heat from internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5649-5659.
    5. Wang, E.H. & Zhang, H.G. & Fan, B.Y. & Ouyang, M.G. & Zhao, Y. & Mu, Q.H., 2011. "Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery," Energy, Elsevier, vol. 36(5), pages 3406-3418.
    6. Vaja, Iacopo & Gambarotta, Agostino, 2010. "Internal Combustion Engine (ICE) bottoming with Organic Rankine Cycles (ORCs)," Energy, Elsevier, vol. 35(2), pages 1084-1093.
    7. Rakopoulos, C.D. & Scott, M.A. & Kyritsis, D.C. & Giakoumis, E.G., 2008. "Availability analysis of hydrogen/natural gas blends combustion in internal combustion engines," Energy, Elsevier, vol. 33(2), pages 248-255.
    8. Chen, Huijuan & Goswami, D. Yogi & Stefanakos, Elias K., 2010. "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3059-3067, December.
    9. Yu, Guopeng & Shu, Gequn & Tian, Hua & Wei, Haiqiao & Liu, Lina, 2013. "Simulation and thermodynamic analysis of a bottoming Organic Rankine Cycle (ORC) of diesel engine (DE)," Energy, Elsevier, vol. 51(C), pages 281-290.
    10. Shu, Gequn & Zhao, Jian & Tian, Hua & Liang, Xingyu & Wei, Haiqiao, 2012. "Parametric and exergetic analysis of waste heat recovery system based on thermoelectric generator and organic rankine cycle utilizing R123," Energy, Elsevier, vol. 45(1), pages 806-816.
    11. Srinivasan, Kalyan K. & Mago, Pedro J. & Krishnan, Sundar R., 2010. "Analysis of exhaust waste heat recovery from a dual fuel low temperature combustion engine using an Organic Rankine Cycle," Energy, Elsevier, vol. 35(6), pages 2387-2399.
    12. Li, You-Rong & Wang, Jian-Ning & Du, Mei-Tang, 2012. "Influence of coupled pinch point temperature difference and evaporation temperature on performance of organic Rankine cycle," Energy, Elsevier, vol. 42(1), pages 503-509.
    13. Tian, Hua & Shu, Gequn & Wei, Haiqiao & Liang, Xingyu & Liu, Lina, 2012. "Fluids and parameters optimization for the organic Rankine cycles (ORCs) used in exhaust heat recovery of Internal Combustion Engine (ICE)," Energy, Elsevier, vol. 47(1), pages 125-136.
    14. Wang, Jiangfeng & Yan, Zhequan & Wang, Man & Ma, Shaolin & Dai, Yiping, 2013. "Thermodynamic analysis and optimization of an (organic Rankine cycle) ORC using low grade heat source," Energy, Elsevier, vol. 49(C), pages 356-365.
    15. Wang, Dongxiang & Ling, Xiang & Peng, Hao & Liu, Lin & Tao, LanLan, 2013. "Efficiency and optimal performance evaluation of organic Rankine cycle for low grade waste heat power generation," Energy, Elsevier, vol. 50(C), pages 343-352.
    16. Rakopoulos, C.D & Kyritsis, D.C, 2001. "Comparative second-law analysis of internal combustion engine operation for methane, methanol, and dodecane fuels," Energy, Elsevier, vol. 26(7), pages 705-722.
    17. He, Chao & Liu, Chao & Gao, Hong & Xie, Hui & Li, Yourong & Wu, Shuangying & Xu, Jinliang, 2012. "The optimal evaporation temperature and working fluids for subcritical organic Rankine cycle," Energy, Elsevier, vol. 38(1), pages 136-143.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patil, Dipak S. & Arakerimath, Rachayya R. & Walke, Pramod V., 2018. "Thermoelectric materials and heat exchangers for power generation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 1-22.
    2. Lecompte, S. & Huisseune, H. & van den Broek, M. & De Paepe, M., 2015. "Methodical thermodynamic analysis and regression models of organic Rankine cycle architectures for waste heat recovery," Energy, Elsevier, vol. 87(C), pages 60-76.
    3. Hong Gao & Fuxiang Chen, 2018. "Thermo-Economic Analysis of a Bottoming Kalina Cycle for Internal Combustion Engine Exhaust Heat Recovery," Energies, MDPI, vol. 11(11), pages 1-19, November.
    4. Zhu, Sipeng & Liu, Sheng & Qu, Shuan & Deng, Kangyao, 2017. "Thermodynamic and experimental researches on matching strategies of the pre-turbine steam injection and the Miller cycle applied on a turbocharged diesel engine," Energy, Elsevier, vol. 140(P1), pages 488-505.
    5. Hajabdollahi, Hassan & Ganjehkaviri, Abdolsaeid & Mohd Jaafar, Mohammad Nazri, 2015. "Thermo-economic optimization of RSORC (regenerative solar organic Rankine cycle) considering hourly analysis," Energy, Elsevier, vol. 87(C), pages 369-380.
    6. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2015. "Multi-objective optimization of a continuous thermally regenerative electrochemical cycle for waste heat recovery," Energy, Elsevier, vol. 93(P1), pages 1022-1029.
    7. Sun, Qi-qi & Zhang, Hao-chun & Sun, Zi-jian & Xia, Yan, 2023. "Thermodynamic analysis of potassium Rankine cycle in space nuclear power by energy analysis and exergy analysis," Energy, Elsevier, vol. 273(C).
    8. Irimescu, Adrian & Merola, Simona Silvia & Tornatore, Cinzia & Valentino, Gerardo, 2015. "Development of a semi-empirical convective heat transfer correlation based on thermodynamic and optical measurements in a spark ignition engine," Applied Energy, Elsevier, vol. 157(C), pages 777-788.
    9. Zhu, Sipeng & Zhang, Kun & Deng, Kangyao, 2020. "A review of waste heat recovery from the marine engine with highly efficient bottoming power cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    10. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Weng, Peifen & Ren, Jianxing, 2018. "Design and operation optimization of organic Rankine cycle coupled trigeneration systems," Energy, Elsevier, vol. 142(C), pages 666-677.
    11. Sun, Hongchuang & Qin, Jiang & Hung, Tzu-Chen & Lin, Chih-Hung & Lin, Yi-Fan, 2018. "Performance comparison of organic Rankine cycle with expansion from superheated zone or two-phase zone based on temperature utilization rate of heat source," Energy, Elsevier, vol. 149(C), pages 566-576.
    12. Long, R. & Bao, Y.J. & Huang, X.M. & Liu, W., 2014. "Exergy analysis and working fluid selection of organic Rankine cycle for low grade waste heat recovery," Energy, Elsevier, vol. 73(C), pages 475-483.
    13. Eyidogan, Muharrem & Canka Kilic, Fatma & Kaya, Durmus & Coban, Volkan & Cagman, Selman, 2016. "Investigation of Organic Rankine Cycle (ORC) technologies in Turkey from the technical and economic point of view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 885-895.
    14. Faiza Brahimi & Baya Madani & Messaouda Ghemmadi, 2022. "Comparative Thermodynamic Environmental and Economic Analyses of Combined Cycles Using Air and Supercritical CO 2 in the Bottoming Cycles for Power Generation by Gas Turbine Waste Heat Recovery," Energies, MDPI, vol. 15(23), pages 1-21, November.
    15. Tańczuk, Mariusz & Ulbrich, Roman, 2013. "Implementation of a biomass-fired co-generation plant supplied with an ORC (Organic Rankine Cycle) as a heat source for small scale heat distribution system – A comparative analysis under Polish and G," Energy, Elsevier, vol. 62(C), pages 132-141.
    16. Yılmaz, Alper, 2015. "Transcritical organic Rankine vapor compression refrigeration system for intercity bus air-conditioning using engine exhaust heat," Energy, Elsevier, vol. 82(C), pages 1047-1056.
    17. Gharagheizi, Farhad & Ilani-Kashkouli, Poorandokht & Mohammadi, Amir H. & Ramjugernath, Deresh, 2014. "A group contribution method for determination of the standard molar chemical exergy of organic compounds," Energy, Elsevier, vol. 70(C), pages 288-297.
    18. Chen, Hao & Guo, Qi & Yang, Lu & Liu, Shenghua & Xie, Xuliang & Chen, Zhaoyang & Liu, Zengqiang, 2015. "A new six stroke single cylinder diesel engine referring Rankine cycle," Energy, Elsevier, vol. 87(C), pages 336-342.
    19. Chang, C.T. & Costa, M. & La Villetta, M. & Macaluso, A. & Piazzullo, D. & Vanoli, L., 2019. "Thermo-economic analyses of a Taiwanese combined CHP system fuelled with syngas from rice husk gasification," Energy, Elsevier, vol. 167(C), pages 766-780.
    20. Eveloy, Valérie & Rodgers, Peter & Qiu, Linyue, 2016. "Performance investigation of a power, heating and seawater desalination poly-generation scheme in an off-shore oil field," Energy, Elsevier, vol. 98(C), pages 26-39.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    2. Alklaibi, A.M. & Lior, N., 2021. "Waste heat utilization from internal combustion engines for power augmentation and refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Yang, Kai & Zhang, Hongguang & Wang, Zhen & Zhang, Jian & Yang, Fubin & Wang, Enhua & Yao, Baofeng, 2013. "Study of zeotropic mixtures of ORC (organic Rankine cycle) under engine various operating conditions," Energy, Elsevier, vol. 58(C), pages 494-510.
    4. He, Chao & Liu, Chao & Zhou, Mengtong & Xie, Hui & Xu, Xiaoxiao & Wu, Shuangying & Li, Yourong, 2014. "A new selection principle of working fluids for subcritical organic Rankine cycle coupling with different heat sources," Energy, Elsevier, vol. 68(C), pages 283-291.
    5. Yang, Fubin & Zhang, Hongguang & Yu, Zhibin & Wang, Enhua & Meng, Fanxiao & Liu, Hongda & Wang, Jingfu, 2017. "Parametric optimization and heat transfer analysis of a dual loop ORC (organic Rankine cycle) system for CNG engine waste heat recovery," Energy, Elsevier, vol. 118(C), pages 753-775.
    6. Yılmaz, Alper, 2015. "Transcritical organic Rankine vapor compression refrigeration system for intercity bus air-conditioning using engine exhaust heat," Energy, Elsevier, vol. 82(C), pages 1047-1056.
    7. Yue, Chen & Han, Dong & Pu, Wenhao & He, Weifeng, 2015. "Energetic analysis of a novel vehicle power and cooling/heating cogeneration energy system using cascade cycles," Energy, Elsevier, vol. 82(C), pages 242-255.
    8. Zhou, Feng & Joshi, Shailesh N. & Rhote-Vaney, Raphael & Dede, Ercan M., 2017. "A review and future application of Rankine Cycle to passenger vehicles for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1008-1021.
    9. Ge, Zhong & Wang, Hua & Wang, Hui-Tao & Wang, Jian-Jun & Li, Ming & Wu, Fu-Zhong & Zhang, Song-Yuan, 2015. "Main parameters optimization of regenerative organic Rankine cycle driven by low-temperature flue gas waste heat," Energy, Elsevier, vol. 93(P2), pages 1886-1895.
    10. Shu, Gequn & Liu, Lina & Tian, Hua & Wei, Haiqiao & Yu, Guopeng, 2014. "Parametric and working fluid analysis of a dual-loop organic Rankine cycle (DORC) used in engine waste heat recovery," Applied Energy, Elsevier, vol. 113(C), pages 1188-1198.
    11. Liu, Chao & He, Chao & Gao, Hong & Xie, Hui & Li, Yourong & Wu, Shuangying & Xu, Jinliang, 2013. "The environmental impact of organic Rankine cycle for waste heat recovery through life-cycle assessment," Energy, Elsevier, vol. 56(C), pages 144-154.
    12. Liu, Peng & Shu, Gequn & Tian, Hua & Wang, Xuan & Yu, Zhigang, 2018. "Alkanes based two-stage expansion with interheating Organic Rankine cycle for multi-waste heat recovery of truck diesel engine," Energy, Elsevier, vol. 147(C), pages 337-350.
    13. Wu, Chuang & Yan, Xiao-jiang & Wang, Shun-sen & Bai, Kun-lun & Di, Juan & Cheng, Shang-fang & Li, Jun, 2016. "System optimisation and performance analysis of CO2 transcritical power cycle for waste heat recovery," Energy, Elsevier, vol. 100(C), pages 391-400.
    14. Yang, Fubin & Zhang, Hongguang & Song, Songsong & Bei, Chen & Wang, Hongjin & Wang, Enhua, 2015. "Thermoeconomic multi-objective optimization of an organic Rankine cycle for exhaust waste heat recovery of a diesel engine," Energy, Elsevier, vol. 93(P2), pages 2208-2228.
    15. Chintala, Venkateswarlu & Kumar, Suresh & Pandey, Jitendra K., 2018. "A technical review on waste heat recovery from compression ignition engines using organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 493-509.
    16. Panesar, Angad Singh, 2016. "An innovative organic Rankine cycle approach for high temperature applications," Energy, Elsevier, vol. 115(P2), pages 1436-1450.
    17. Chintala, Venkateswarlu & Subramanian, K.A., 2014. "Assessment of maximum available work of a hydrogen fueled compression ignition engine using exergy analysis," Energy, Elsevier, vol. 67(C), pages 162-175.
    18. Wang, Dongxiang & Ling, Xiang & Peng, Hao & Liu, Lin & Tao, LanLan, 2013. "Efficiency and optimal performance evaluation of organic Rankine cycle for low grade waste heat power generation," Energy, Elsevier, vol. 50(C), pages 343-352.
    19. Fuhaid Alshammari & Apostolos Karvountzis-Kontakiotis & Apostolos Pesyridis & Muhammad Usman, 2018. "Expander Technologies for Automotive Engine Organic Rankine Cycle Applications," Energies, MDPI, vol. 11(7), pages 1-36, July.
    20. Zhai, Huixing & An, Qingsong & Shi, Lin & Lemort, Vincent & Quoilin, Sylvain, 2016. "Categorization and analysis of heat sources for organic Rankine cycle systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 790-805.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:58:y:2013:i:c:p:448-457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.