IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v78y2014icp439-450.html
   My bibliography  Save this article

Analysis of the reusability of the energy of the exhaust gas from the calciner for the production of carbon

Author

Listed:
  • Wang, Liang-Chen
  • Chang, Li-Ming
  • Wang, Liang-Bi
  • Song, Ke-Wei
  • Zhang, Yong-Heng
  • Wu, Xiang
  • Lin, Zhi-Min

Abstract

A calciner is used to produce carbon from anthracite coal. In its working process, a significant amount of energy is lost through its exhaust gas. How much energy can be recovered from the exhaust gas becomes important. To answer this question a method to determine the mass flow rate and the composition of the exhaust gas from a calciner is developed, and a combustion model based on well-stirred reactor is used to obtain the suitable combustor parameters and the amount of the chemical energy which can be released in combustion. As an example to verify the method and the model, the energy utilization ratio of a calciner with power of 1250 kW is investigated. The results show that the method can determine the mass flow rate and the composition of the exhaust gas, and the combustion model is suitable for obtaining reasonable results in determining the volume and the heat duty of the combustor, the air–fuel ratio, and the amount of the chemical energy released. For a calciner with power of 1250 kW, when the temperature of the tail gas after combustion reaches to 135 °C, the energy utilization ratio of the calciner is calculated to be around 77%.

Suggested Citation

  • Wang, Liang-Chen & Chang, Li-Ming & Wang, Liang-Bi & Song, Ke-Wei & Zhang, Yong-Heng & Wu, Xiang & Lin, Zhi-Min, 2014. "Analysis of the reusability of the energy of the exhaust gas from the calciner for the production of carbon," Energy, Elsevier, vol. 78(C), pages 439-450.
  • Handle: RePEc:eee:energy:v:78:y:2014:i:c:p:439-450
    DOI: 10.1016/j.energy.2014.10.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214011803
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.10.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Jian & Li, Yan & Gu, Chun-wei & Zhang, Li, 2014. "Thermodynamic analysis and performance optimization of an ORC (Organic Rankine Cycle) system for multi-strand waste heat sources in petroleum refining industry," Energy, Elsevier, vol. 71(C), pages 673-680.
    2. Fu, Jianqin & Liu, Jingping & Ren, Chengqin & Wang, Linjun & Deng, Banglin & Xu, Zhengxin, 2012. "An open steam power cycle used for IC engine exhaust gas energy recovery," Energy, Elsevier, vol. 44(1), pages 544-554.
    3. Wang, Chaojun & He, Boshu & Sun, Shaoyang & Wu, Ying & Yan, Na & Yan, Linbo & Pei, Xiaohui, 2012. "Application of a low pressure economizer for waste heat recovery from the exhaust flue gas in a 600 MW power plant," Energy, Elsevier, vol. 48(1), pages 196-202.
    4. Nwosu, Paul Nwachukwu & Nuutinen, Mika & Larmi, Martti, 2014. "Thermal modeling of a novel thermosyphonic waste heat absorption system for internal combustion engines," Energy, Elsevier, vol. 71(C), pages 21-31.
    5. Domingues, António & Santos, Helder & Costa, Mário, 2013. "Analysis of vehicle exhaust waste heat recovery potential using a Rankine cycle," Energy, Elsevier, vol. 49(C), pages 71-85.
    6. Zhu, Sipeng & Deng, Kangyao & Qu, Shuan, 2014. "Thermodynamic analysis of an in-cylinder waste heat recovery system for internal combustion engines," Energy, Elsevier, vol. 67(C), pages 548-556.
    7. Lunghi, P. & Burzacca, R., 2004. "Energy recovery from industrial waste of a confectionery plant by means of BIGFC plant," Energy, Elsevier, vol. 29(12), pages 2601-2617.
    8. Nguyen, Tuong-Van & Knudsen, Thomas & Larsen, Ulrik & Haglind, Fredrik, 2014. "Thermodynamic evaluation of the Kalina split-cycle concepts for waste heat recovery applications," Energy, Elsevier, vol. 71(C), pages 277-288.
    9. Ptasinski, K.J. & Koymans, M.N. & Verspagen, H.H.G., 2006. "Performance of the Dutch Energy Sector based on energy, exergy and Extended Exergy Accounting," Energy, Elsevier, vol. 31(15), pages 3135-3144.
    10. Hu, Jin-Li & Kao, Chih-Hung, 2007. "Efficient energy-saving targets for APEC economies," Energy Policy, Elsevier, vol. 35(1), pages 373-382, January.
    11. Bannai, Masaaki & Houkabe, Akira & Furukawa, Masahiko & Kashiwagi, Takao & Akisawa, Atsushi & Yoshida, Takuya & Yamada, Hiroyuki, 2006. "Development of efficiency-enhanced cogeneration system utilizing high-temperature exhaust-gas from a regenerative thermal oxidizer for waste volatile-organic-compound gases," Applied Energy, Elsevier, vol. 83(9), pages 929-942, September.
    12. Barati, M. & Esfahani, S. & Utigard, T.A., 2011. "Energy recovery from high temperature slags," Energy, Elsevier, vol. 36(9), pages 5440-5449.
    13. Yu, Byeonghun & Kum, Sung-Min & Lee, Chang-Eon & Lee, Seungro, 2013. "Study on the combustion characteristics of a premixed combustion system with exhaust gas recirculation," Energy, Elsevier, vol. 61(C), pages 345-353.
    14. He, Maogang & Zhang, Xinxin & Zeng, Ke & Gao, Ke, 2011. "A combined thermodynamic cycle used for waste heat recovery of internal combustion engine," Energy, Elsevier, vol. 36(12), pages 6821-6829.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jou, Chih-Ju G. & Wu, Chung-Rung & Lee, Chien-Li, 2010. "Reduction of energy cost and CO2 emission for the furnace using energy recovered from waste tail-gas," Energy, Elsevier, vol. 35(3), pages 1232-1236.
    2. Tahouni, Nassim & Gholami, Majid & Panjeshahi, M. Hassan, 2016. "Integration of flare gas with fuel gas network in refineries," Energy, Elsevier, vol. 111(C), pages 82-91.
    3. Oluleye, Gbemi & Jobson, Megan & Smith, Robin, 2015. "A hierarchical approach for evaluating and selecting waste heat utilization opportunities," Energy, Elsevier, vol. 90(P1), pages 5-23.
    4. Kim, SeLin & Choi, KyungWook & Lee, Kihyung & Kim, Kibum, 2016. "Evaluation of automotive waste heat recovery for various driving modes," Energy, Elsevier, vol. 106(C), pages 579-589.
    5. Pierobon, Leonardo & Nguyen, Tuong-Van & Larsen, Ulrik & Haglind, Fredrik & Elmegaard, Brian, 2013. "Multi-objective optimization of organic Rankine cycles for waste heat recovery: Application in an offshore platform," Energy, Elsevier, vol. 58(C), pages 538-549.
    6. Zhao, Rongchao & Li, Weihua & Zhuge, Weilin & Zhang, Yangjun & Yin, Yong, 2017. "Numerical study on steam injection in a turbocompound diesel engine for waste heat recovery," Applied Energy, Elsevier, vol. 185(P1), pages 506-518.
    7. Zhu, Sipeng & Deng, Kangyao & Qu, Shuan, 2014. "Thermodynamic analysis of an in-cylinder waste heat recovery system for internal combustion engines," Energy, Elsevier, vol. 67(C), pages 548-556.
    8. Mingrui Wei & Thanh Sa Nguyen & Richard Fiifi Turkson & Guanlun Guo & Jinping Liu, 2016. "The Effect of Water Injection on the Control of In-Cylinder Pressure and Enhanced Power Output in a Four-Stroke Spark-Ignition Engine," Sustainability, MDPI, vol. 8(10), pages 1-22, September.
    9. Fu, Jianqin & Liu, Jingping & Wang, Yong & Deng, Banglin & Yang, Yanping & Feng, Renhua & Yang, Jing, 2014. "A comparative study on various turbocharging approaches based on IC engine exhaust gas energy recovery," Applied Energy, Elsevier, vol. 113(C), pages 248-257.
    10. Poran, Arnon & Tartakovsky, Leonid, 2015. "Energy efficiency of a direct-injection internal combustion engine with high-pressure methanol steam reforming," Energy, Elsevier, vol. 88(C), pages 506-514.
    11. Yue, Chen & Han, Dong & Pu, Wenhao & He, Weifeng, 2015. "Energetic analysis of a novel vehicle power and cooling/heating cogeneration energy system using cascade cycles," Energy, Elsevier, vol. 82(C), pages 242-255.
    12. Yang, Kai & Zhang, Hongguang & Wang, Zhen & Zhang, Jian & Yang, Fubin & Wang, Enhua & Yao, Baofeng, 2013. "Study of zeotropic mixtures of ORC (organic Rankine cycle) under engine various operating conditions," Energy, Elsevier, vol. 58(C), pages 494-510.
    13. Wenzhi Gao & Wangbo He & Lifeng Wei & Guanghua Li & Ziqi Liu, 2016. "Experimental and Potential Analysis of a Single-Valve Expander for Waste Heat Recovery of a Gasoline Engine," Energies, MDPI, vol. 9(12), pages 1-15, November.
    14. Luo, Xianglong & Hu, Jiahao & Zhao, Jun & Zhang, Bingjian & Chen, Ying & Mo, Songping, 2014. "Improved exergoeconomic analysis of a retrofitted natural gas-based cogeneration system," Energy, Elsevier, vol. 72(C), pages 459-475.
    15. Fu, Jianqin & Liu, Jingping & Xu, Zhengxin & Ren, Chengqin & Deng, Banglin, 2013. "A combined thermodynamic cycle based on methanol dissociation for IC (internal combustion) engine exhaust heat recovery," Energy, Elsevier, vol. 55(C), pages 778-786.
    16. Panesar, Angad Singh, 2016. "An innovative organic Rankine cycle approach for high temperature applications," Energy, Elsevier, vol. 115(P2), pages 1436-1450.
    17. Chintala, Venkateswarlu & Subramanian, K.A., 2014. "Assessment of maximum available work of a hydrogen fueled compression ignition engine using exergy analysis," Energy, Elsevier, vol. 67(C), pages 162-175.
    18. Wang, Feng & Cao, Yiding & Wang, Guoqiang, 2015. "Thermoelectric generation coupling methanol steam reforming characteristic in microreactor," Energy, Elsevier, vol. 80(C), pages 642-653.
    19. Pathak, Saurabh & Shukla, S.K. & Sagade, Atul A., 2023. "Novel multi-helical coil heat exchanger-based small-scale organic Rankine cycle: A detailed heat transfer analysis," Energy, Elsevier, vol. 277(C).
    20. Yao, Ling & Wang, Feng & Wang, Long & Wang, Guoqiang, 2019. "Transport enhancement study on small-scale methanol steam reforming reactor with waste heat recovery for hydrogen production," Energy, Elsevier, vol. 175(C), pages 986-997.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:78:y:2014:i:c:p:439-450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.