High energy-density and power-density thermal storage prototype with hydrated salt for hot water and space heating
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2019.04.114
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Miró, Laia & Gasia, Jaume & Cabeza, Luisa F., 2016. "Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review," Applied Energy, Elsevier, vol. 179(C), pages 284-301.
- Lin, Yaxue & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials," Energy, Elsevier, vol. 165(PA), pages 685-708.
- Mohamed, Shamseldin A. & Al-Sulaiman, Fahad A. & Ibrahim, Nasiru I. & Zahir, Md. Hasan & Al-Ahmed, Amir & Saidur, R. & Yılbaş, B.S. & Sahin, A.Z., 2017. "A review on current status and challenges of inorganic phase change materials for thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1072-1089.
- Dannemand, Mark & Dragsted, Janne & Fan, Jianhua & Johansen, Jakob Berg & Kong, Weiqiang & Furbo, Simon, 2016. "Experimental investigations on prototype heat storage units utilizing stable supercooling of sodium acetate trihydrate mixtures," Applied Energy, Elsevier, vol. 169(C), pages 72-80.
- Fan, Liwu & Khodadadi, J.M., 2011. "Thermal conductivity enhancement of phase change materials for thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 24-46, January.
- Dannemand, Mark & Johansen, Jakob Berg & Kong, Weiqiang & Furbo, Simon, 2016. "Experimental investigations on cylindrical latent heat storage units with sodium acetate trihydrate composites utilizing supercooling," Applied Energy, Elsevier, vol. 177(C), pages 591-601.
- Li, TingXian & Lee, Ju-Hyuk & Wang, RuZhu & Kang, Yong Tae, 2013. "Enhancement of heat transfer for thermal energy storage application using stearic acid nanocomposite with multi-walled carbon nanotubes," Energy, Elsevier, vol. 55(C), pages 752-761.
- Safari, A. & Saidur, R. & Sulaiman, F.A. & Xu, Yan & Dong, Joe, 2017. "A review on supercooling of Phase Change Materials in thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 905-919.
- Li, Tingxian & Wang, Ruzhu & Kiplagat, Jeremiah K. & Kang, YongTae, 2013. "Performance analysis of an integrated energy storage and energy upgrade thermochemical solid–gas sorption system for seasonal storage of solar thermal energy," Energy, Elsevier, vol. 50(C), pages 454-467.
- Zahir, Md. Hasan & Mohamed, Shamseldin A. & Saidur, R. & Al-Sulaiman, Fahad A., 2019. "Supercooling of phase-change materials and the techniques used to mitigate the phenomenon," Applied Energy, Elsevier, vol. 240(C), pages 793-817.
- Du, Kun & Calautit, John & Wang, Zhonghua & Wu, Yupeng & Liu, Hao, 2018. "A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges," Applied Energy, Elsevier, vol. 220(C), pages 242-273.
- Englmair, Gerald & Moser, Christoph & Furbo, Simon & Dannemand, Mark & Fan, Jianhua, 2018. "Design and functionality of a segmented heat-storage prototype utilizing stable supercooling of sodium acetate trihydrate in a solar heating system," Applied Energy, Elsevier, vol. 221(C), pages 522-534.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Liu, Changchun & Han, Wei & Wang, Zefeng & Zhang, Na & Kang, Qilan & Liu, Meng, 2021. "Proposal and assessment of a new solar space heating system by integrating an absorption-compression heat pump," Applied Energy, Elsevier, vol. 294(C).
- Zhao, B.C. & Li, T.X. & Gao, J.C. & Wang, R.Z., 2020. "Latent heat thermal storage using salt hydrates for distributed building heating: A multi-level scale-up research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
- Yang Li & Caixia Wang & Jun Zong & Jien Ma & Youtong Fang, 2021. "Experimental Research of the Heat Storage Performance of a Magnesium Nitrate Hexahydrate-Based Phase Change Material for Building Heating," Energies, MDPI, vol. 14(21), pages 1-11, November.
- Tomasz Tietze & Piotr Szulc & Daniel Smykowski & Andrzej Sitka & Romuald Redzicki, 2021. "Application of Phase Change Material and Artificial Neural Networks for Smoothing of Heat Flux Fluctuations," Energies, MDPI, vol. 14(12), pages 1-17, June.
- Zhao, B.C. & Li, T.X. & He, F. & Gao, J.C. & Wang, R.Z., 2020. "Demonstration of Mg(NO3)2·6H2O-based composite phase change material for practical-scale medium-low temperature thermal energy storage," Energy, Elsevier, vol. 201(C).
- Fan, Man & Wang, Jia & Kong, Xiangfei & Suo, Hanxiao & Zheng, Wandong & Li, Han, 2023. "Experimental evaluation of the cascaded energy storage radiator for constructing indoor thermal environment in winter," Applied Energy, Elsevier, vol. 332(C).
- Mohamed Fadl & Philip Eames, 2020. "Thermal Performance Analysis of the Charging/Discharging Process of a Shell and Horizontally Oriented Multi-Tube Latent Heat Storage System," Energies, MDPI, vol. 13(23), pages 1-23, November.
- Zhao, B.C. & Wang, R.Z., 2019. "Perspectives for short-term thermal energy storage using salt hydrates for building heating," Energy, Elsevier, vol. 189(C).
- Weiguang Su & Yilin Li & Tongyu Zhou & Jo Darkwa & Georgios Kokogiannakis & Zhao Li, 2019. "Microencapsulation of Paraffin with Poly (Urea Methacrylate) Shell for Solar Water Heater," Energies, MDPI, vol. 12(18), pages 1-9, September.
- Ding, Zhixiong & Wu, Wei & Leung, Michael, 2021. "Advanced/hybrid thermal energy storage technology: material, cycle, system and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
- Du, Ruxue & Wu, Minqiang & Wang, Siqi & Wu, Si & Wang, Ruzhu & Li, Tingxian, 2022. "Experimental investigation on high energy-density and power-density hydrated salt-based thermal energy storage," Applied Energy, Elsevier, vol. 325(C).
- Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dubey, Abhayjeet kumar & Sun, Jingyi & Choudhary, Tushar & Dash, Madhusmita & Rakshit, Dibakar & Ansari, M Zahid & Ramakrishna, Seeram & Liu, Yong & Nanda, Himansu Sekhar, 2023. "Emerging phase change materials with improved thermal efficiency for a clean and sustainable environment: An approach towards net zero," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
- Yu, Kunyang & Liu, Yushi & Yang, Yingzi, 2021. "Review on form-stable inorganic hydrated salt phase change materials: Preparation, characterization and effect on the thermophysical properties," Applied Energy, Elsevier, vol. 292(C).
- Turunen, Konsta & Yazdani, Maryam Roza & Puupponen, Salla & Santasalo-Aarnio, Annukka & Seppälä, Ari, 2020. "Cold-crystallizing erythritol-polyelectrolyte: Scaling up reliable long-term heat storage material," Applied Energy, Elsevier, vol. 266(C).
- Wang, Wei & He, Xibo & Shuai, Yong & Qiu, Jun & Hou, Yicheng & Pan, Qinghui, 2022. "Experimental study on thermal performance of a novel medium-high temperature packed-bed latent heat storage system containing binary nitrate," Applied Energy, Elsevier, vol. 309(C).
- Tao, Y.B. & He, Ya-Ling, 2018. "A review of phase change material and performance enhancement method for latent heat storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 245-259.
- Lin, Yaxue & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials," Energy, Elsevier, vol. 165(PA), pages 685-708.
- Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Zhao, B.C. & Wang, R.Z., 2019. "Perspectives for short-term thermal energy storage using salt hydrates for building heating," Energy, Elsevier, vol. 189(C).
- Klimeš, Lubomír & Charvát, Pavel & Mastani Joybari, Mahmood & Zálešák, Martin & Haghighat, Fariborz & Panchabikesan, Karthik & El Mankibi, Mohamed & Yuan, Yanping, 2020. "Computer modelling and experimental investigation of phase change hysteresis of PCMs: The state-of-the-art review," Applied Energy, Elsevier, vol. 263(C).
- Mousavi, Seyedmostafa & Rismanchi, Behzad & Brey, Stefan & Aye, Lu, 2021. "PCM embedded radiant chilled ceiling: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
- Englmair, Gerald & Moser, Christoph & Schranzhofer, Hermann & Fan, Jianhua & Furbo, Simon, 2019. "A solar combi-system utilizing stable supercooling of sodium acetate trihydrate for heat storage: Numerical performance investigation," Applied Energy, Elsevier, vol. 242(C), pages 1108-1120.
- Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
- Zhu, Yalin & Qin, Yaosong & Liang, Shuen & Chen, Keping & Tian, Chunrong & Wang, Jianhua & Luo, Xuan & Zhang, Lin, 2019. "Graphene/SiO2/n-octadecane nanoencapsulated phase change material with flower like morphology, high thermal conductivity, and suppressed supercooling," Applied Energy, Elsevier, vol. 250(C), pages 98-108.
- Fumey, B. & Weber, R. & Baldini, L., 2019. "Sorption based long-term thermal energy storage – Process classification and analysis of performance limitations: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 57-74.
- Lin, Yaxue & Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2730-2742.
- Zhang, Xiyao & Niu, Jianlei & Wu, Jian-Yong, 2019. "Development and characterization of novel and stable silicon nanoparticles-embedded PCM-in-water emulsions for thermal energy storage," Applied Energy, Elsevier, vol. 238(C), pages 1407-1416.
- Wang, Yan & Sui, Jiahao & Xu, Zijie, 2022. "Preparation and characterization of CaCl2·6H2O based binary inorganic eutectic system for low temperature thermal energy storage," Energy, Elsevier, vol. 259(C).
- Du, Ruxue & Wu, Minqiang & Wang, Siqi & Wu, Si & Wang, Ruzhu & Li, Tingxian, 2022. "Experimental investigation on high energy-density and power-density hydrated salt-based thermal energy storage," Applied Energy, Elsevier, vol. 325(C).
- Li, Zhi & Lu, Yiji & Huang, Rui & Chang, Jinwei & Yu, Xiaonan & Jiang, Ruicheng & Yu, Xiaoli & Roskilly, Anthony Paul, 2021. "Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage," Applied Energy, Elsevier, vol. 283(C).
- Borri, Emiliano & Sze, Jia Yin & Tafone, Alessio & Romagnoli, Alessandro & Li, Yongliang & Comodi, Gabriele, 2020. "Experimental and numerical characterization of sub-zero phase change materials for cold thermal energy storage," Applied Energy, Elsevier, vol. 275(C).
More about this item
Keywords
Thermal energy storage; High energy-density; High power-density; Sodium acetate trihydrate; Hot water; Space heating;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:248:y:2019:i:c:p:406-414. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.