IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v69y2017icp862-870.html
   My bibliography  Save this article

Graphene in electrocatalyst and proton conductiong membrane in fuel cell applications: An overview

Author

Listed:
  • Shaari, N.
  • Kamarudin, S.K.

Abstract

This study elaborates the development and great attraction of graphene in fuel cell application. The main focus is to highlight the contribution of graphene based material in fuel cell application particularly used in two important part of fuel cell system that are electrocatalyst and polymer electrolyte membrane. This paper also introduces the graphene and its derivative such as graphene oxide (GO), reduced graphene oxide (rGO) and sulfonated graphene oxide (SGO) in terms of their special properties, advantages, disadvantages as well as the modification method. It also discusses the application and capability of graphene based material and CNT used in electrocatalyst material. Later it also highlights the application of graphene and its derivative as well as their achievement in fuel cell as proton conductor and efficient fuel blocker. Thus, it is bright future to see more development of graphene based material in fuel cell application. However, there are several challenges that can be big inhibitor of graphene and its derivative to be applied in various applications such as production volume limitation, cost, electrical properties, other material competition as well as health and safety issues. Finally, this study explains all the challenges and opportunity in commercialization.

Suggested Citation

  • Shaari, N. & Kamarudin, S.K., 2017. "Graphene in electrocatalyst and proton conductiong membrane in fuel cell applications: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 862-870.
  • Handle: RePEc:eee:rensus:v:69:y:2017:i:c:p:862-870
    DOI: 10.1016/j.rser.2016.07.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116303707
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.07.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jhan, Jing-Yi & Huang, Yu-Wei & Hsu, Chun-Han & Teng, Hsisheng & Kuo, Daniel & Kuo, Ping-Lin, 2013. "Three-dimensional network of graphene grown with carbon nanotubes as carbon support for fuel cells," Energy, Elsevier, vol. 53(C), pages 282-287.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mirzaei, Farokh & Parnian, Mohammad Javad & Rowshanzamir, Soosan, 2017. "Durability investigation and performance study of hydrothermal synthesized platinum-multi walled carbon nanotube nanocomposite catalyst for proton exchange membrane fuel cell," Energy, Elsevier, vol. 138(C), pages 696-705.
    2. Olabi, A.G. & Abdelkareem, Mohammad Ali & Wilberforce, Tabbi & Sayed, Enas Taha, 2021. "Application of graphene in energy storage device – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2023. "Renewable smart energy network: A thermoeconomic comparison between conventional lithium-ion batteries and reversible solid oxide fuel cells," Renewable Energy, Elsevier, vol. 214(C), pages 74-95.
    4. Yu, Bor-Chern & Wang, Yi-Chun & Lu, Hsin-Chun & Lin, Hsiu-Li & Shih, Chao-Ming & Kumar, S. Rajesh & Lue, Shingjiang Jessie, 2017. "Hydroxide-ion selective electrolytes based on a polybenzimidazole/graphene oxide composite membrane," Energy, Elsevier, vol. 134(C), pages 802-812.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chou, Chang-Chen & Liu, Cheng-Hong & Chen, Bing-Hung, 2014. "Effects of reduction temperature and pH value of polyol process on reduced graphene oxide supported Pt electrocatalysts for oxygen reduction reaction," Energy, Elsevier, vol. 70(C), pages 231-238.
    2. Yang, H.N. & Lee, D.C. & Park, K.W. & Kim, W.J., 2015. "Platinum–boron doped graphene intercalated by carbon black for cathode catalyst in proton exchange membrane fuel cell," Energy, Elsevier, vol. 89(C), pages 500-510.
    3. Borghei, Maryam & Scotti, Gianmario & Kanninen, Petri & Weckman, Timo & Anoshkin, Ilya V. & Nasibulin, Albert G. & Franssila, Sami & Kauppinen, Esko I. & Kallio, Tanja & Ruiz, Virginia, 2014. "Enhanced performance of a silicon microfabricated direct methanol fuel cell with PtRu catalysts supported on few-walled carbon nanotubes," Energy, Elsevier, vol. 65(C), pages 612-620.
    4. Wang, Kai & Li, Liwei & Zhang, Tiezhu & Liu, Zaifei, 2014. "Nitrogen-doped graphene for supercapacitor with long-term electrochemical stability," Energy, Elsevier, vol. 70(C), pages 612-617.
    5. Huang, Ke-Jing & Wang, Lan & Zhang, Ji-Zong & Wang, Ling-Ling & Mo, Yan-Ping, 2014. "One-step preparation of layered molybdenum disulfide/multi-walled carbon nanotube composites for enhanced performance supercapacitor," Energy, Elsevier, vol. 67(C), pages 234-240.
    6. Sahoo, Madhumita & Ramaprabhu, S., 2017. "Nitrogen and sulfur co-doped porous carbon – is an efficient electrocatalyst as platinum or a hoax for oxygen reduction reaction in acidic environment PEM fuel cell?," Energy, Elsevier, vol. 119(C), pages 1075-1083.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:69:y:2017:i:c:p:862-870. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.