IDEAS home Printed from https://ideas.repec.org/a/eee/juipol/v40y2016icp67-74.html
   My bibliography  Save this article

Typology of centralised and decentralised visions for electricity infrastructure

Author

Listed:
  • Funcke, Simon
  • Bauknecht, Dierk

Abstract

Scientific and public controversies about the design of future electricity systems can be observed, including differences around centralised and decentralised approaches. Taking the German case as an example, we develop a typology of (de)centralisation that distinguishes between (1) infrastructure location (connectivity and proximity), and (2) infrastructure operation (flexibility and controllability). This typology is applied to two competing visions for the future of electricity infrastructure. A differentiated view of the various dimensions can contribute to the current debate, clarify visions for development paths, and inform infrastructure governance.

Suggested Citation

  • Funcke, Simon & Bauknecht, Dierk, 2016. "Typology of centralised and decentralised visions for electricity infrastructure," Utilities Policy, Elsevier, vol. 40(C), pages 67-74.
  • Handle: RePEc:eee:juipol:v:40:y:2016:i:c:p:67-74
    DOI: 10.1016/j.jup.2016.03.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0957178716300819
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jup.2016.03.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karger, Cornelia R. & Hennings, Wilfried, 2009. "Sustainability evaluation of decentralized electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 583-593, April.
    2. Smith, Adrian & Stirling, Andy & Berkhout, Frans, 2005. "The governance of sustainable socio-technical transitions," Research Policy, Elsevier, vol. 34(10), pages 1491-1510, December.
    3. Jürgen Hauber & Chantal Ruppert-Winkel, 2012. "Moving towards Energy Self-Sufficiency Based on Renewables: Comparative Case Studies on the Emergence of Regional Processes of Socio-Technical Change in Germany," Sustainability, MDPI, vol. 4(4), pages 1-40, March.
    4. Richardson, David B., 2013. "Electric vehicles and the electric grid: A review of modeling approaches, Impacts, and renewable energy integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 247-254.
    5. Alanne, Kari & Saari, Arto, 2006. "Distributed energy generation and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(6), pages 539-558, December.
    6. Helm, Dieter, 2014. "The European framework for energy and climate policies," Energy Policy, Elsevier, vol. 64(C), pages 29-35.
    7. Blarke, Morten B. & Jenkins, Bryan M., 2013. "SuperGrid or SmartGrid: Competing strategies for large-scale integration of intermittent renewables?," Energy Policy, Elsevier, vol. 58(C), pages 381-390.
    8. Lund, Henrik & Andersen, Anders N. & Østergaard, Poul Alberg & Mathiesen, Brian Vad & Connolly, David, 2012. "From electricity smart grids to smart energy systems – A market operation based approach and understanding," Energy, Elsevier, vol. 42(1), pages 96-102.
    9. Pepermans, G. & Driesen, J. & Haeseldonckx, D. & Belmans, R. & D'haeseleer, W., 2005. "Distributed generation: definition, benefits and issues," Energy Policy, Elsevier, vol. 33(6), pages 787-798, April.
    10. Geels, Frank W. & Schot, Johan, 2007. "Typology of sociotechnical transition pathways," Research Policy, Elsevier, vol. 36(3), pages 399-417, April.
    11. Chicco, Gianfranco & Mancarella, Pierluigi, 2009. "Distributed multi-generation: A comprehensive view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 535-551, April.
    12. Schleicher-Tappeser, Ruggero, 2012. "How renewables will change electricity markets in the next five years," Energy Policy, Elsevier, vol. 48(C), pages 64-75.
    13. Viral, Rajkumar & Khatod, D.K., 2012. "Optimal planning of distributed generation systems in distribution system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5146-5165.
    14. Wissner, Matthias, 2011. "The Smart Grid - A saucerful of secrets?," Applied Energy, Elsevier, vol. 88(7), pages 2509-2518, July.
    15. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    16. Erlinghagen, Sabine & Markard, Jochen, 2012. "Smart grids and the transformation of the electricity sector: ICT firms as potential catalysts for sectoral change," Energy Policy, Elsevier, vol. 51(C), pages 895-906.
    17. Bridge, Gavin & Bouzarovski, Stefan & Bradshaw, Michael & Eyre, Nick, 2013. "Geographies of energy transition: Space, place and the low-carbon economy," Energy Policy, Elsevier, vol. 53(C), pages 331-340.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laura Stößel & Leila Poddie & Tobias Spratte & Ralf Schelenz & Georg Jacobs, 2021. "County Clustering with Bioenergy as Flexible Power Unit in a Renewable Energy System," Energies, MDPI, vol. 14(17), pages 1-14, August.
    2. Fink, Simon & Ruffing, Eva, 2020. "Learning in iterated consultation procedures – The example of the German electricity grid demand planning," Utilities Policy, Elsevier, vol. 65(C).
    3. Leonhardt, Renata & Noble, Bram & Poelzer, Greg & Belcher, Ken & Fitzpatrick, Patricia, 2023. "Government instruments for community renewable energy in northern and Indigenous communities," Energy Policy, Elsevier, vol. 177(C).
    4. Matthias Kühnbach & Felix Guthoff & Anke Bekk & Ludger Eltrop, 2020. "Development of Scenarios for a Multi-Model System Analysis Based on the Example of a Cellular Energy System," Energies, MDPI, vol. 13(4), pages 1-23, February.
    5. Funcke, S. & Ruppert-Winkel, C., 2020. "Storylines of (de)centralisation: Exploring infrastructure dimensions in the German electricity system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    6. Weinand, J.M. & McKenna, R. & Fichtner, W., 2019. "Developing a municipality typology for modelling decentralised energy systems," Utilities Policy, Elsevier, vol. 57(C), pages 75-96.
    7. Mehigan, L. & Deane, J.P. & Gallachóir, B.P.Ó. & Bertsch, V., 2018. "A review of the role of distributed generation (DG) in future electricity systems," Energy, Elsevier, vol. 163(C), pages 822-836.
    8. Bauknecht, Dierk & Funcke, Simon & Vogel, Moritz, 2020. "Is small beautiful? A framework for assessing decentralised electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    9. Lindberg, Marie Byskov & Markard, Jochen & Andersen, Allan Dahl, 2019. "Policies, actors and sustainability transition pathways: A study of the EU’s energy policy mix," Research Policy, Elsevier, vol. 48(10).
    10. Edens, Marga G. & Lavrijssen, Saskia A.C.M., 2019. "Balancing public values during the energy transition – How can German and Dutch DSOs safeguard sustainability?," Energy Policy, Elsevier, vol. 128(C), pages 57-65.
    11. Judson, E. & Fitch-Roy, O. & Pownall, T. & Bray, R. & Poulter, H. & Soutar, I. & Lowes, R. & Connor, P.M. & Britton, J. & Woodman, B. & Mitchell, C., 2020. "The centre cannot (always) hold: Examining pathways towards energy system de-centralisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    12. Andersen, Allan Dahl & Markard, Jochen, 2020. "Multi-technology interaction in socio-technical transitions: How recent dynamics in HVDC technology can inform transition theories," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    13. Kühnbach, Matthias & Pisula, Stefan & Bekk, Anke & Weidlich, Anke, 2020. "How much energy autonomy can decentralised photovoltaic generation provide? A case study for Southern Germany," Applied Energy, Elsevier, vol. 280(C).
    14. Ulrich J. Frey & Sandra Wassermann & Marc Deissenroth-Uhrig, 2020. "Storage Technologies for the Electricity Transition: An Analysis of Actors, Actor Perspectives and Transition Pathways in Germany," Energies, MDPI, vol. 14(1), pages 1-19, December.
    15. Federica Leone & Ala Hasan & Francesco Reda & Hassam ur Rehman & Fausto Carmelo Nigrelli & Francesco Nocera & Vincenzo Costanzo, 2023. "Supporting Cities towards Carbon Neutral Transition through Territorial Acupuncture," Sustainability, MDPI, vol. 15(5), pages 1-31, February.
    16. van Zyl-Bulitta, Verena Helen & Ritzel, Christian & Stafford, William & Wong, James Gien, 2019. "A compass to guide through the myriad of sustainable energy transition options across the global North-South divide," Energy, Elsevier, vol. 181(C), pages 307-320.
    17. McKenna, Russell, 2018. "The double-edged sword of decentralized energy autonomy," Energy Policy, Elsevier, vol. 113(C), pages 747-750.
    18. Imke Lammers & Lea Diestelmeier, 2017. "Experimenting with Law and Governance for Decentralized Electricity Systems: Adjusting Regulation to Reality?," Sustainability, MDPI, vol. 9(2), pages 1-14, February.
    19. Tóth, Tamás & Somossy, Éva Szabina & Horváth, Péter János, 2022. "A decentralizált villamosenergia-rendszerek fejlődésének nemzetközi és hazai szempontjai [International and domestic aspects of decentralized electricity system development]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(6), pages 697-720.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco Pasimeni, 2017. "Adoption and Diffusion of Micro-Grids in Italy. An Analysis of Regional Factors Using Agent-Based Modelling," SPRU Working Paper Series 2017-09, SPRU - Science Policy Research Unit, University of Sussex Business School.
    2. Yanine, Franco F. & Sauma, Enzo E., 2013. "Review of grid-tie micro-generation systems without energy storage: Towards a new approach to sustainable hybrid energy systems linked to energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 60-95.
    3. Adil, Ali M. & Ko, Yekang, 2016. "Socio-technical evolution of Decentralized Energy Systems: A critical review and implications for urban planning and policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1025-1037.
    4. Roman Jurowetzki, 2015. "Unpacking Big Systems - Natural Language Processing meets Network Analysis. A Study of Smart Grid Development in Denmark," SPRU Working Paper Series 2015-15, SPRU - Science Policy Research Unit, University of Sussex Business School.
    5. Roesler, Tim & Hassler, Markus, 2019. "Creating niches – The role of policy for the implementation of bioenergy village cooperatives in Germany," Energy Policy, Elsevier, vol. 124(C), pages 95-101.
    6. Yildiz, Özgür, 2016. "Public-private partnerships, incomplete contracts, and distributional fairness – when payments matter," MPRA Paper 74552, University Library of Munich, Germany.
    7. Kejia Yang & Johan Schot & Bernhard Truffer, 2020. "Shaping the Directionality of Sustainability Transitions: The Diverging Development Patterns of Solar PV in Two Chinese Provinces," SPRU Working Paper Series 2020-14, SPRU - Science Policy Research Unit, University of Sussex Business School.
    8. Sanya Carley & Richard Andrews, 2012. "Creating a sustainable U.S. electricity sector: the question of scale," Policy Sciences, Springer;Society of Policy Sciences, vol. 45(2), pages 97-121, June.
    9. Jonathan Silver & Simon Marvin, 2017. "Powering sub-Saharan Africa’s urban revolution: An energy transitions approach," Urban Studies, Urban Studies Journal Limited, vol. 54(4), pages 847-861, March.
    10. Niesten, Eva & Alkemade, Floortje, 2016. "How is value created and captured in smart grids? A review of the literature and an analysis of pilot projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 629-638.
    11. Funcke, S. & Ruppert-Winkel, C., 2020. "Storylines of (de)centralisation: Exploring infrastructure dimensions in the German electricity system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    12. Ford, Rebecca & Maidment, Chris & Vigurs, Carol & Fell, Michael J. & Morris, Madeleine, 2021. "Smart local energy systems (SLES): A framework for exploring transition, context, and impacts," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    13. Steen, Markus & Weaver, Tyson, 2017. "Incumbents’ diversification and cross-sectorial energy industry dynamics," Research Policy, Elsevier, vol. 46(6), pages 1071-1086.
    14. Mike Hodson & Frank W. Geels & Andy McMeekin, 2017. "Reconfiguring Urban Sustainability Transitions, Analysing Multiplicity," Sustainability, MDPI, vol. 9(2), pages 1-20, February.
    15. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    16. Wolsink, Maarten, 2020. "Distributed energy systems as common goods: Socio-political acceptance of renewables in intelligent microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    17. Wiegand, Julia, 2017. "Dezentrale Stromerzeugung als Chance zur Stärkung der Energie-Resilienz: Eine qualitative Analyse kommunaler Strategien im Raum Unna," Wuppertaler Studienarbeiten zur nachhaltigen Entwicklung, Wuppertal Institute for Climate, Environment and Energy, volume 11, number 11.
    18. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    19. Capellán-Pérez, Iñigo & Campos-Celador, Álvaro & Terés-Zubiaga, Jon, 2018. "Renewable Energy Cooperatives as an instrument towards the energy transition in Spain," Energy Policy, Elsevier, vol. 123(C), pages 215-229.
    20. Blarke, Morten B., 2012. "Towards an intermittency-friendly energy system: Comparing electric boilers and heat pumps in distributed cogeneration," Applied Energy, Elsevier, vol. 91(1), pages 349-365.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:juipol:v:40:y:2016:i:c:p:67-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.sciencedirect.com/journal/utilities-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.