IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i12p1931-d120129.html
   My bibliography  Save this article

Effective Loss Minimization and Allocation of Unbalanced Distribution Network

Author

Listed:
  • Manvir Kaur

    (Department of Electrical and Instrumentation Engineering, Thapar University, Patiala 147004, Punjab, India)

  • Smarajit Ghosh

    (Department of Electrical and Instrumentation Engineering, Thapar University, Patiala 147004, Punjab, India)

Abstract

An efficient distribution network must be able to supply power with good voltage profile. The main objective of the proposed work is to allocate losses of the unbalanced distribution network by the firefly algorithm in regulated and deregulated environments before and after loss minimization. Reconfiguration is one of the methods for loss reduction of unbalanced distribution network. Further, optimal placement of distributed generation and capacitor in the reconfigured unbalanced distribution network can further reduce the loss. The results of reconfigured unbalanced distribution network in regulated environment have already been reported. In this paper reconfiguration of an unbalanced distribution network in a deregulated environment is also carried out using an established Fuzzy Firefly algorithm. Loss sensitivity factor of unbalanced distribution networks is used to get the appropriate location of distributed generation and capacitor to be placed in the unbalanced distribution network. Their ratings have been found out by using bacteria foraging optimization algorithm (BFOA). The suggested loss allocation method using Firefly algorithm is implemented at first on 13 node unbalanced distribution network to check the performance of the proposed loss allocation method when compared to other available method. Finally the proposed method has been implemented on 25 node unbalanced distribution network. Both of the implementations are carried out under MATLAB environment.

Suggested Citation

  • Manvir Kaur & Smarajit Ghosh, 2017. "Effective Loss Minimization and Allocation of Unbalanced Distribution Network," Energies, MDPI, vol. 10(12), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:1931-:d:120129
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/12/1931/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/12/1931/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zidan, Aboelsood & El-Saadany, Ehab F., 2013. "Distribution system reconfiguration for energy loss reduction considering the variability of load and local renewable generation," Energy, Elsevier, vol. 59(C), pages 698-707.
    2. Viral, Rajkumar & Khatod, D.K., 2012. "Optimal planning of distributed generation systems in distribution system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5146-5165.
    3. Bayod-Rújula, Angel A., 2009. "Future development of the electricity systems with distributed generation," Energy, Elsevier, vol. 34(3), pages 377-383.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Filipe F. C. Silva & Pedro M. S. Carvalho & Luís A. F. M. Ferreira, 2021. "Improving PV Resilience by Dynamic Reconfiguration in Distribution Grids: Problem Complexity and Computation Requirements," Energies, MDPI, vol. 14(4), pages 1-15, February.
    2. Mirna Fouad Abd El-salam & Eman Beshr & Magdy B. Eteiba, 2018. "A New Hybrid Technique for Minimizing Power Losses in a Distribution System by Optimal Sizing and Siting of Distributed Generators with Network Reconfiguration," Energies, MDPI, vol. 11(12), pages 1-26, November.
    3. Paulo M. De Oliveira-De Jesus & Mario A. Rios & Gustavo A. Ramos, 2018. "Energy Loss Allocation in Smart Distribution Systems with Electric Vehicle Integration," Energies, MDPI, vol. 11(8), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anuta, Oghenetejiri Harold & Taylor, Phil & Jones, Darren & McEntee, Tony & Wade, Neal, 2014. "An international review of the implications of regulatory and electricity market structures on the emergence of grid scale electricity storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 489-508.
    2. Zubo, Rana.H.A. & Mokryani, Geev & Rajamani, Haile-Selassie & Aghaei, Jamshid & Niknam, Taher & Pillai, Prashant, 2017. "Operation and planning of distribution networks with integration of renewable distributed generators considering uncertainties: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1177-1198.
    3. Lobão, J.A. & Devezas, T. & Catalão, J.P.S., 2014. "Influence of cable losses on the economic analysis of efficient and sustainable electrical equipment," Energy, Elsevier, vol. 65(C), pages 145-151.
    4. Touretzky, Cara R. & McGuffin, Dana L. & Ziesmer, Jena C. & Baldea, Michael, 2016. "The effect of distributed electricity generation using natural gas on the electric and natural gas grids," Applied Energy, Elsevier, vol. 177(C), pages 500-514.
    5. Guido C. Guerrero-Liquet & Santiago Oviedo-Casado & J. M. Sánchez-Lozano & M. Socorro García-Cascales & Javier Prior & Antonio Urbina, 2018. "Determination of the Optimal Size of Photovoltaic Systems by Using Multi-Criteria Decision-Making Methods," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    6. Funcke, Simon & Bauknecht, Dierk, 2016. "Typology of centralised and decentralised visions for electricity infrastructure," Utilities Policy, Elsevier, vol. 40(C), pages 67-74.
    7. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2014. "An optimal investment planning framework for multiple distributed generation units in industrial distribution systems," Applied Energy, Elsevier, vol. 124(C), pages 62-72.
    8. Razavi, Seyed-Ehsan & Rahimi, Ehsan & Javadi, Mohammad Sadegh & Nezhad, Ali Esmaeel & Lotfi, Mohamed & Shafie-khah, Miadreza & Catalão, João P.S., 2019. "Impact of distributed generation on protection and voltage regulation of distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 157-167.
    9. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    10. J. Rajalakshmi & S. Durairaj, 2021. "Application of multi-objective optimization algorithm for siting and sizing of distributed generations in distribution networks," Journal of Combinatorial Optimization, Springer, vol. 41(2), pages 267-289, February.
    11. Clarke, Fiona & Dorneanu, Bogdan & Mechleri, Evgenia & Arellano-Garcia, Harvey, 2021. "Optimal design of heating and cooling pipeline networks for residential distributed energy resource systems," Energy, Elsevier, vol. 235(C).
    12. Sedghi, Mahdi & Ahmadian, Ali & Aliakbar-Golkar, Masoud, 2016. "Assessment of optimization algorithms capability in distribution network planning: Review, comparison and modification techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 415-434.
    13. Alagoz, B. Baykant & Kaygusuz, Asim & Akcin, Murat & Alagoz, Serkan, 2013. "A closed-loop energy price controlling method for real-time energy balancing in a smart grid energy market," Energy, Elsevier, vol. 59(C), pages 95-104.
    14. Bornapour, Mosayeb & Hooshmand, Rahmat-Allah, 2015. "An efficient scenario-based stochastic programming for optimal planning of combined heat, power, and hydrogen production of molten carbonate fuel cell power plants," Energy, Elsevier, vol. 83(C), pages 734-748.
    15. Paliwal, Priyanka & Patidar, N.P. & Nema, R.K., 2014. "Planning of grid integrated distributed generators: A review of technology, objectives and techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 557-570.
    16. Rezaee Jordehi, Ahmad, 2016. "Allocation of distributed generation units in electric power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 893-905.
    17. Sultana, U. & Khairuddin, Azhar B. & Aman, M.M. & Mokhtar, A.S. & Zareen, N., 2016. "A review of optimum DG placement based on minimization of power losses and voltage stability enhancement of distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 363-378.
    18. Blarke, Morten B. & Jenkins, Bryan M., 2013. "SuperGrid or SmartGrid: Competing strategies for large-scale integration of intermittent renewables?," Energy Policy, Elsevier, vol. 58(C), pages 381-390.
    19. Sergio Montoya-Bueno & Jose Ignacio Muñoz-Hernandez & Javier Contreras & Luis Baringo, 2020. "A Benders’ Decomposition Approach for Renewable Generation Investment in Distribution Systems," Energies, MDPI, vol. 13(5), pages 1-19, March.
    20. Fardadi, Mahshid & McLarty, Dustin F. & Jabbari, Faryar, 2016. "Investigation of thermal control for different SOFC flow geometries," Applied Energy, Elsevier, vol. 178(C), pages 43-55.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:1931-:d:120129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.