IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v26y1987i2p137-158.html
   My bibliography  Save this article

Forced-convective steady-state heat transfers from shrouded vertical fin arrays, aligned parallel to an undisturbed air-stream

Author

Listed:
  • Naik, S.
  • Probert, S.D.
  • Shilston, M.J.

Abstract

An experimental investigation of the steady-state rates of heat loss from an array of vertical rectangular fins of 3 mm thickness and 250 mm length, when in the presence of an almost adiabatic horizontal shroud, situated adjacent to and above the horizontal fin tips, is reported. With the fin's horizontal base at a uniform temperature of 40 ± 0·1° C above that of the ambient environment, the optimal fin separation--corresponding to the maximum rate of heat loss--is deduced. As the ratio of the shroud height above the vertical fins to the fin height decreases from unity to zero, this optimal value decreases by approximately 17%. The frictional characteristics of the air flow through the fin array have also been studied in the Reynolds number range of 4·0 x 104 to 2·0 x 105. Large streamwise pressure drops and high heat-transfer rates resulted when the fins were closely spaced and no clearance gap was present above the vertical fins. In reasing the shroud clearance resulted in smaller overall pressure drops and decreasing heat-transfer rates from the heat exchanger.

Suggested Citation

  • Naik, S. & Probert, S.D. & Shilston, M.J., 1987. "Forced-convective steady-state heat transfers from shrouded vertical fin arrays, aligned parallel to an undisturbed air-stream," Applied Energy, Elsevier, vol. 26(2), pages 137-158.
  • Handle: RePEc:eee:appene:v:26:y:1987:i:2:p:137-158
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0306-2619(87)90015-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Loprete, Jason & Trojanowski, Rebecca & Butcher, Thomas & Longtin, Jon & Assanis, Dimitris, 2024. "Enabling residential heating decarbonization through hydronic low-temperature thermal distribution using forced-air assistive devices," Applied Energy, Elsevier, vol. 353(PA).
    2. Sousa, J. & Villafañe, L. & Paniagua, G., 2014. "Thermal analysis and modeling of surface heat exchangers operating in the transonic regime," Energy, Elsevier, vol. 64(C), pages 961-969.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:26:y:1987:i:2:p:137-158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.