IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i20p3814-d943588.html
   My bibliography  Save this article

Dynamics of Heat Transfer Analysis of Convective-Radiative Fins with Variable Thermal Conductivity and Heat Generation: Differential Transformation Method

Author

Listed:
  • P. V. Ananth Subray

    (School of Applied Sciences, REVA University, Bengaluru 560064, India
    These authors contributed equally to this work and are co-first authors.)

  • B. N. Hanumagowda

    (School of Applied Sciences, REVA University, Bengaluru 560064, India)

  • S. V. K. Varma

    (School of Applied Sciences, REVA University, Bengaluru 560064, India)

  • A. M. Zidan

    (Department of Mathematics, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia)

  • Mohammed Kbiri Alaoui

    (Department of Mathematics, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia)

  • C. S. K. Raju

    (Department of Mathematics, GITAM School of Science, Bangalore 562163, India)

  • Nehad Ali Shah

    (Department of Mathematics, Sejong University, Seoul 05006, Korea
    These authors contributed equally to this work and are co-first authors.)

  • Prem Junsawang

    (Department of Statistics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand)

Abstract

The study of convective heat transfer in differently shaped fins with radiation, internal heat generation and variable thermal conductivity was considered. The energy equation of the model was converted into the dimensionless form by adopting the proper variables, which was later solved using the differential transformation method. The impact of the parameters on the thermal performance, efficiency and heat transfer of the fins was analyzed graphically and also by performing thermal analysis on the fins. It was noticed that there was a significant effect on the thermal performance of the fins with different shapes, and also the heat transfer rate of the fin increased for improved values of the internal heat generation and radiation parameters. The exponential profile showed better results than other profiles, and the results obtained were supported by thermal analysis using ANSYS software.

Suggested Citation

  • P. V. Ananth Subray & B. N. Hanumagowda & S. V. K. Varma & A. M. Zidan & Mohammed Kbiri Alaoui & C. S. K. Raju & Nehad Ali Shah & Prem Junsawang, 2022. "Dynamics of Heat Transfer Analysis of Convective-Radiative Fins with Variable Thermal Conductivity and Heat Generation: Differential Transformation Method," Mathematics, MDPI, vol. 10(20), pages 1-15, October.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:20:p:3814-:d:943588
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/20/3814/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/20/3814/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Torabi, Mohsen & Aziz, Abdul & Zhang, Kaili, 2013. "A comparative study of longitudinal fins of rectangular, trapezoidal and concave parabolic profiles with multiple nonlinearities," Energy, Elsevier, vol. 51(C), pages 243-256.
    2. Ryoichi Chiba, 2014. "A Series Solution for Heat Conduction Problem with Phase Change in a Finite Slab," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-9, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arushi Sharma & B. N. Hanumagowda & Pudhari Srilatha & P. V. Ananth Subray & S. V. K. Varma & Jasgurpreet Singh Chohan & Shalan Alkarni & Nehad Ali Shah, 2023. "A Thermal Analysis of a Convective–Radiative Porous Annular Fin Wetted in a Ternary Nanofluid Exposed to Heat Generation under the Influence of a Magnetic Field," Energies, MDPI, vol. 16(17), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torabi, Mohsen & Zhang, Kaili & Yang, Guangcheng & Wang, Jun & Wu, Peng, 2014. "Temperature distribution, local and total entropy generation analyses in asymmetric cooling composite geometries with multiple nonlinearities: Effect of imperfect thermal contact," Energy, Elsevier, vol. 78(C), pages 218-234.
    2. Kundu, Balaram & Lee, Kwan-Soo, 2014. "Analytical tools for calculating the maximum heat transfer of annular stepped fins with internal heat generation and radiation effects," Energy, Elsevier, vol. 76(C), pages 733-748.
    3. Torabi, Mohsen & Zhang, Kaili, 2014. "Classical entropy generation analysis in cooled homogenous and functionally graded material slabs with variation of internal heat generation with temperature, and convective–radiative boundary conditi," Energy, Elsevier, vol. 65(C), pages 387-397.
    4. Torabi, Mohsen & Zhang, Kaili, 2014. "Temperature distribution and classical entropy generation analyses in an asymmetric cooling composite hollow cylinder with temperature-dependent thermal conductivity and internal heat generation," Energy, Elsevier, vol. 73(C), pages 484-496.
    5. Sousa, J. & Villafañe, L. & Paniagua, G., 2014. "Thermal analysis and modeling of surface heat exchangers operating in the transonic regime," Energy, Elsevier, vol. 64(C), pages 961-969.
    6. Hsiao, Kai-Long, 2013. "Energy conversion conjugate conduction–convection and radiation over non-linearly extrusion stretching sheet with physical multimedia effects," Energy, Elsevier, vol. 59(C), pages 494-502.
    7. Saedodin, Seyfolah & Motaghedi Barforoush, Mohammad Sadegh, 2015. "Experimental and numerical investigations on enclosure pressure effects on radiation and convection heat losses from two finite concentric cylinders using two radiation shields," Energy, Elsevier, vol. 90(P1), pages 652-662.
    8. Uddin, Md. Jashim & Bég, O. Anwar & Uddin, Md. Nazir, 2016. "Energy conversion under conjugate conduction, magneto-convection, diffusion and nonlinear radiation over a non-linearly stretching sheet with slip and multiple convective boundary conditions," Energy, Elsevier, vol. 115(P1), pages 1119-1129.
    9. Xia, H.H. & Tang, G.H. & Shi, Y. & Tao, W.Q., 2014. "Simulation of heat transfer enhancement by longitudinal vortex generators in dimple heat exchangers," Energy, Elsevier, vol. 74(C), pages 27-36.
    10. Hazarika, Saheera Azmi & Bhanja, Dipankar & Nath, Sujit & Kundu, Balaram, 2015. "Analytical solution to predict performance and optimum design parameters of a constructal T-shaped fin with simultaneous heat and mass transfer," Energy, Elsevier, vol. 84(C), pages 303-316.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:20:p:3814-:d:943588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.