IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v76y2014icp733-748.html
   My bibliography  Save this article

Analytical tools for calculating the maximum heat transfer of annular stepped fins with internal heat generation and radiation effects

Author

Listed:
  • Kundu, Balaram
  • Lee, Kwan-Soo

Abstract

ASFs (Annular stepped fins) require less material than ADFs (annular disc fins) while retaining the ability to produce the same cooling rate in a convection environment. A simple analysis was developed for ASFs that considered radiative heat transfer and heat generated by a nuclear reactor through linearization of the radiation terms. The linearized equations were solved by exact and approximate analytical methods. Without any linearization, a new closed-form analysis was established for the temperature profile with the help of the differential transform method. An integral differential transform method was introduced to determine the actual heat-transfer rate when heat was generated inside an ASF under nonlinear radiation surface conditions. The temperature results obtained using this analytical approach were compared with those obtained from a finite-difference analysis, and were in excellent agreement. The fin performance was defined as a function of the heat generated for a given set of design conditions. An optimization study with varying heat generation was carried out to compare the performance of ADFs and ASFs, which highlighted the superior aspects of an annular fin design.

Suggested Citation

  • Kundu, Balaram & Lee, Kwan-Soo, 2014. "Analytical tools for calculating the maximum heat transfer of annular stepped fins with internal heat generation and radiation effects," Energy, Elsevier, vol. 76(C), pages 733-748.
  • Handle: RePEc:eee:energy:v:76:y:2014:i:c:p:733-748
    DOI: 10.1016/j.energy.2014.08.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214010251
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.08.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Torabi, Mohsen & Aziz, Abdul & Zhang, Kaili, 2013. "A comparative study of longitudinal fins of rectangular, trapezoidal and concave parabolic profiles with multiple nonlinearities," Energy, Elsevier, vol. 51(C), pages 243-256.
    2. Kundu, Balaram & Lee, Kwan-Soo, 2012. "Analytic solution for heat transfer of wet fins on account of all nonlinearity effects," Energy, Elsevier, vol. 41(1), pages 354-367.
    3. Kundu, Balaram & Barman, Debasis, 2011. "An analytical prediction for performance and optimization of an annular fin assembly of trapezoidal profile under dehumidifying conditions," Energy, Elsevier, vol. 36(5), pages 2572-2588.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ocłoń, Paweł & Cisek, Piotr & Taler, Dawid & Pilarczyk, Marcin & Szwarc, Tomasz, 2015. "Optimizing of the underground power cable bedding using momentum-type particle swarm optimization method," Energy, Elsevier, vol. 92(P2), pages 230-239.
    2. Arushi Sharma & B. N. Hanumagowda & Pudhari Srilatha & P. V. Ananth Subray & S. V. K. Varma & Jasgurpreet Singh Chohan & Shalan Alkarni & Nehad Ali Shah, 2023. "A Thermal Analysis of a Convective–Radiative Porous Annular Fin Wetted in a Ternary Nanofluid Exposed to Heat Generation under the Influence of a Magnetic Field," Energies, MDPI, vol. 16(17), pages 1-15, August.
    3. Hazarika, Saheera Azmi & Bhanja, Dipankar & Nath, Sujit & Kundu, Balaram, 2015. "Analytical solution to predict performance and optimum design parameters of a constructal T-shaped fin with simultaneous heat and mass transfer," Energy, Elsevier, vol. 84(C), pages 303-316.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hazarika, Saheera Azmi & Bhanja, Dipankar & Nath, Sujit & Kundu, Balaram, 2015. "Analytical solution to predict performance and optimum design parameters of a constructal T-shaped fin with simultaneous heat and mass transfer," Energy, Elsevier, vol. 84(C), pages 303-316.
    2. Torabi, Mohsen & Zhang, Kaili & Yang, Guangcheng & Wang, Jun & Wu, Peng, 2014. "Temperature distribution, local and total entropy generation analyses in asymmetric cooling composite geometries with multiple nonlinearities: Effect of imperfect thermal contact," Energy, Elsevier, vol. 78(C), pages 218-234.
    3. Kundu, Balaram & Lee, Kwan-Soo, 2012. "A novel analysis for calculating the smallest envelope shape of wet fins with a nonlinear mode of surface transport," Energy, Elsevier, vol. 44(1), pages 527-543.
    4. Hsiao, Kai-Long, 2013. "Energy conversion conjugate conduction–convection and radiation over non-linearly extrusion stretching sheet with physical multimedia effects," Energy, Elsevier, vol. 59(C), pages 494-502.
    5. Torabi, Mohsen & Aziz, Abdul & Zhang, Kaili, 2013. "A comparative study of longitudinal fins of rectangular, trapezoidal and concave parabolic profiles with multiple nonlinearities," Energy, Elsevier, vol. 51(C), pages 243-256.
    6. Torabi, Mohsen & Zhang, Kaili, 2014. "Classical entropy generation analysis in cooled homogenous and functionally graded material slabs with variation of internal heat generation with temperature, and convective–radiative boundary conditi," Energy, Elsevier, vol. 65(C), pages 387-397.
    7. Torabi, Mohsen & Zhang, Kaili, 2014. "Temperature distribution and classical entropy generation analyses in an asymmetric cooling composite hollow cylinder with temperature-dependent thermal conductivity and internal heat generation," Energy, Elsevier, vol. 73(C), pages 484-496.
    8. P. V. Ananth Subray & B. N. Hanumagowda & S. V. K. Varma & A. M. Zidan & Mohammed Kbiri Alaoui & C. S. K. Raju & Nehad Ali Shah & Prem Junsawang, 2022. "Dynamics of Heat Transfer Analysis of Convective-Radiative Fins with Variable Thermal Conductivity and Heat Generation: Differential Transformation Method," Mathematics, MDPI, vol. 10(20), pages 1-15, October.
    9. Sousa, J. & Villafañe, L. & Paniagua, G., 2014. "Thermal analysis and modeling of surface heat exchangers operating in the transonic regime," Energy, Elsevier, vol. 64(C), pages 961-969.
    10. Saedodin, Seyfolah & Motaghedi Barforoush, Mohammad Sadegh, 2015. "Experimental and numerical investigations on enclosure pressure effects on radiation and convection heat losses from two finite concentric cylinders using two radiation shields," Energy, Elsevier, vol. 90(P1), pages 652-662.
    11. Uddin, Md. Jashim & Bég, O. Anwar & Uddin, Md. Nazir, 2016. "Energy conversion under conjugate conduction, magneto-convection, diffusion and nonlinear radiation over a non-linearly stretching sheet with slip and multiple convective boundary conditions," Energy, Elsevier, vol. 115(P1), pages 1119-1129.
    12. Xia, H.H. & Tang, G.H. & Shi, Y. & Tao, W.Q., 2014. "Simulation of heat transfer enhancement by longitudinal vortex generators in dimple heat exchangers," Energy, Elsevier, vol. 74(C), pages 27-36.
    13. Kundu, Balaram & Lee, Kwan-Soo, 2012. "Analytic solution for heat transfer of wet fins on account of all nonlinearity effects," Energy, Elsevier, vol. 41(1), pages 354-367.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:76:y:2014:i:c:p:733-748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.