IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v64y2014icp747-757.html
   My bibliography  Save this article

G-Functions for multiple interacting pile heat exchangers

Author

Listed:
  • Loveridge, Fleur
  • Powrie, William

Abstract

Pile heat exchangers – where heat transfer pipes are cast into the building piled foundations – offer an opportunity to use ground energy systems without the additional construction costs related to the provision of special purpose heat exchangers. However, analysis methods for pile heat exchangers are still under development. In particular there is an absence of available methods and guidance for the amount of thermal interaction that may occur between adjacent pile heat exchangers and the corresponding reduction in available energy that this will cause. This is of particular importance as the locations of foundation piles are controlled by the structural demands of the building and cannot be optimised with respect to the thermal analysis. This paper presents a method for deriving G-functions for use with multiple pile heat exchangers. Example functions illustrate the primary importance of pile spacing in controlling available energy, followed by the number of piles within any given arrangement. Significantly it was found that the internal thermal behaviour of a pile is not influenced appreciably by adjacent piles.

Suggested Citation

  • Loveridge, Fleur & Powrie, William, 2014. "G-Functions for multiple interacting pile heat exchangers," Energy, Elsevier, vol. 64(C), pages 747-757.
  • Handle: RePEc:eee:energy:v:64:y:2014:i:c:p:747-757
    DOI: 10.1016/j.energy.2013.11.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213009766
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.11.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan, Rui & Jiang, Yiqiang & Yao, Yang & Ma, Zuiliang, 2008. "Theoretical study on the performance of an integrated ground-source heat pump system in a whole year," Energy, Elsevier, vol. 33(11), pages 1671-1679.
    2. Li, Min & Lai, Alvin C.K., 2012. "New temperature response functions (G functions) for pile and borehole ground heat exchangers based on composite-medium line-source theory," Energy, Elsevier, vol. 38(1), pages 255-263.
    3. Beck, Markus & Bayer, Peter & de Paly, Michael & Hecht-Méndez, Jozsef & Zell, Andreas, 2013. "Geometric arrangement and operation mode adjustment in low-enthalpy geothermal borehole fields for heating," Energy, Elsevier, vol. 49(C), pages 434-443.
    4. Zanchini, Enzo & Lazzari, Stefano & Priarone, Antonella, 2012. "Long-term performance of large borehole heat exchanger fields with unbalanced seasonal loads and groundwater flow," Energy, Elsevier, vol. 38(1), pages 66-77.
    5. C.J. Wood & H. Liu & S.B. Riffat, 2010. "Comparison of a modelled and field tested piled ground heat exchanger system for a residential building and the simulated effect of assisted ground heat recharge-super-†," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 5(3), pages 137-143, March.
    6. Wood, Christopher J. & Liu, Hao & Riffat, Saffa B., 2010. "An investigation of the heat pump performance and ground temperature of a piled foundation heat exchanger system for a residential building," Energy, Elsevier, vol. 35(12), pages 4932-4940.
    7. John W. Lund, 2010. "Direct Utilization of Geothermal Energy," Energies, MDPI, vol. 3(8), pages 1-29, August.
    8. Loveridge, Fleur & Powrie, William, 2013. "Temperature response functions (G-functions) for single pile heat exchangers," Energy, Elsevier, vol. 57(C), pages 554-564.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cunha, R.P. & Bourne-Webb, P.J., 2022. "A critical review on the current knowledge of geothermal energy piles to sustainably climatize buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    2. Kong, Gangqiang & Dai, Guohao & Zhou, Yang & Yang, Qing, 2024. "Analytical solution model of heat transfer for energy soldier piles during excavation to backfilling," Renewable Energy, Elsevier, vol. 226(C).
    3. Zanchini, E. & Lazzari, S., 2014. "New g-functions for the hourly simulation of double U-tube borehole heat exchanger fields," Energy, Elsevier, vol. 70(C), pages 444-455.
    4. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    5. Gultekin, Ahmet & Aydin, Murat & Sisman, Altug, 2019. "Effects of arrangement geometry and number of boreholes on thermal interaction coefficient of multi-borehole heat exchangers," Applied Energy, Elsevier, vol. 237(C), pages 163-170.
    6. Fadejev, Jevgeni & Simson, Raimo & Kurnitski, Jarek & Haghighat, Fariborz, 2017. "A review on energy piles design, sizing and modelling," Energy, Elsevier, vol. 122(C), pages 390-407.
    7. Meibodi, Saleh S. & Loveridge, Fleur, 2022. "The future role of energy geostructures in fifth generation district heating and cooling networks," Energy, Elsevier, vol. 240(C).
    8. Alberdi-Pagola, Maria & Poulsen, Søren Erbs & Jensen, Rasmus Lund & Madsen, Søren, 2020. "A case study of the sizing and optimisation of an energy pile foundation (Rosborg, Denmark)," Renewable Energy, Elsevier, vol. 147(P2), pages 2724-2735.
    9. Liu, Ryan Yin Wai & Taborda, David M.G., 2024. "The effects of thermal interference on the thermal performance of thermo-active pile groups," Renewable Energy, Elsevier, vol. 225(C).
    10. Makasis, Nikolas & Narsilio, Guillermo A., 2020. "Energy diaphragm wall thermal design: The effects of pipe configuration and spacing," Renewable Energy, Elsevier, vol. 154(C), pages 476-487.
    11. Sani, Abubakar Kawuwa & Singh, Rao Martand & Amis, Tony & Cavarretta, Ignazio, 2019. "A review on the performance of geothermal energy pile foundation, its design process and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 54-78.
    12. Maragna, Charles & Loveridge, Fleur, 2019. "A resistive-capacitive model of pile heat exchangers with an application to thermal response tests interpretation," Renewable Energy, Elsevier, vol. 138(C), pages 891-910.
    13. Ida Shafagh & Simon Rees & Iñigo Urra Mardaras & Marina Curto Janó & Merche Polo Carbayo, 2020. "A Model of a Diaphragm Wall Ground Heat Exchanger," Energies, MDPI, vol. 13(2), pages 1-23, January.
    14. Li, Min & Lai, Alvin C.K., 2015. "Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales," Applied Energy, Elsevier, vol. 151(C), pages 178-191.
    15. Bi, Yuehong & Lyu, Tianli & Wang, Hongyan & Sun, Ruirui & Yu, Meize, 2019. "Parameter analysis of single U-tube GHE and dynamic simulation of underground temperature field round one year for GSHP," Energy, Elsevier, vol. 174(C), pages 138-147.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    2. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2016. "A finite line source model with Cauchy-type top boundary conditions for simulating near surface effects on borehole heat exchangers," Energy, Elsevier, vol. 98(C), pages 50-63.
    3. Cecinato, Francesco & Loveridge, Fleur A., 2015. "Influences on the thermal efficiency of energy piles," Energy, Elsevier, vol. 82(C), pages 1021-1033.
    4. Bourne-Webb, Peter & Burlon, Sebastien & Javed, Saqib & Kürten, Sylvia & Loveridge, Fleur, 2016. "Analysis and design methods for energy geostructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 402-419.
    5. Loveridge, Fleur & Powrie, William, 2013. "Temperature response functions (G-functions) for single pile heat exchangers," Energy, Elsevier, vol. 57(C), pages 554-564.
    6. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    7. Shim, B.O. & Park, C.-H., 2013. "Ground thermal conductivity for (ground source heat pumps) GSHPs in Korea," Energy, Elsevier, vol. 56(C), pages 167-174.
    8. Zanchini, E. & Lazzari, S., 2014. "New g-functions for the hourly simulation of double U-tube borehole heat exchanger fields," Energy, Elsevier, vol. 70(C), pages 444-455.
    9. Bakirci, Kadir & Colak, Derya, 2012. "Effect of a superheating and sub-cooling heat exchanger to the performance of a ground source heat pump system," Energy, Elsevier, vol. 44(1), pages 996-1004.
    10. Zhang, Linfeng & Zhang, Quan & Huang, Gongsheng, 2016. "A transient quasi-3D entire time scale line source model for the fluid and ground temperature prediction of vertical ground heat exchangers (GHEs)," Applied Energy, Elsevier, vol. 170(C), pages 65-75.
    11. Hähnlein, Stefanie & Bayer, Peter & Ferguson, Grant & Blum, Philipp, 2013. "Sustainability and policy for the thermal use of shallow geothermal energy," Energy Policy, Elsevier, vol. 59(C), pages 914-925.
    12. Alberdi-Pagola, Maria & Poulsen, Søren Erbs & Jensen, Rasmus Lund & Madsen, Søren, 2020. "A case study of the sizing and optimisation of an energy pile foundation (Rosborg, Denmark)," Renewable Energy, Elsevier, vol. 147(P2), pages 2724-2735.
    13. Zhang, Xueping & Han, Zongwei & Ji, Qiang & Zhang, Hongzhi & Li, Xiuming, 2021. "Thermal response tests for the identification of soil thermal parameters: A review," Renewable Energy, Elsevier, vol. 173(C), pages 1123-1135.
    14. Claudia Naldi & Enzo Zanchini, 2019. "Full-Time-Scale Fluid-to-Ground Thermal Response of a Borefield with Uniform Fluid Temperature," Energies, MDPI, vol. 12(19), pages 1-18, September.
    15. Li, Min & Lai, Alvin C.K., 2015. "Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales," Applied Energy, Elsevier, vol. 151(C), pages 178-191.
    16. Qi, Zishu & Gao, Qing & Liu, Yan & Yan, Y.Y. & Spitler, Jeffrey D., 2014. "Status and development of hybrid energy systems from hybrid ground source heat pump in China and other countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 37-51.
    17. Zhao, Qiang & Chen, Baoming & Tian, Maocheng & Liu, Fang, 2018. "Investigation on the thermal behavior of energy piles and borehole heat exchangers: A case study," Energy, Elsevier, vol. 162(C), pages 787-797.
    18. Linden Jensen-Page & Fleur Loveridge & Guillermo A. Narsilio, 2019. "Thermal Response Testing of Large Diameter Energy Piles," Energies, MDPI, vol. 12(14), pages 1-25, July.
    19. Florides, G.A. & Pouloupatis, P.D. & Kalogirou, S. & Messaritis, V. & Panayides, I. & Zomeni, Z. & Partasides, G. & Lizides, A. & Sophocleous, E. & Koutsoumpas, K., 2011. "The geothermal characteristics of the ground and the potential of using ground coupled heat pumps in Cyprus," Energy, Elsevier, vol. 36(8), pages 5027-5036.
    20. Faizal, Mohammed & Bouazza, Abdelmalek & McCartney, John S., 2022. "Thermal resistance analysis of an energy pile and adjacent soil using radial temperature gradients," Renewable Energy, Elsevier, vol. 190(C), pages 1066-1077.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:64:y:2014:i:c:p:747-757. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.