A Model of a Diaphragm Wall Ground Heat Exchanger
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Florides, Georgios & Kalogirou, Soteris, 2007. "Ground heat exchangers—A review of systems, models and applications," Renewable Energy, Elsevier, vol. 32(15), pages 2461-2478.
- Loveridge, Fleur & Powrie, William, 2014. "G-Functions for multiple interacting pile heat exchangers," Energy, Elsevier, vol. 64(C), pages 747-757.
- Loveridge, Fleur & Powrie, William, 2013. "Temperature response functions (G-functions) for single pile heat exchangers," Energy, Elsevier, vol. 57(C), pages 554-564.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Natalia Rydalina & Elena Antonova & Irina Akhmetova & Svetlana Ilyashenko & Olga Afanaseva & Vincenzo Bianco & Alexander Fedyukhin, 2020. "Analysis of the Efficiency of Using Heat Exchangers with Porous Inserts in Heat and Gas Supply Systems," Energies, MDPI, vol. 13(22), pages 1-13, November.
- Hanna Michalak & Paweł Przybysz, 2021. "The Use of 3D Numerical Modeling in Conceptual Design: A Case Study," Energies, MDPI, vol. 14(16), pages 1-21, August.
- Wenxiong Xi & Mengyao Xu & Chaoyang Liu & Jian Liu, 2022. "Recent Developments of Heat Transfer Enhancement and Thermal Management Technology," Energies, MDPI, vol. 15(16), pages 1-3, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
- Li, Min & Lai, Alvin C.K., 2015. "Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales," Applied Energy, Elsevier, vol. 151(C), pages 178-191.
- Makasis, Nikolas & Narsilio, Guillermo A., 2020. "Energy diaphragm wall thermal design: The effects of pipe configuration and spacing," Renewable Energy, Elsevier, vol. 154(C), pages 476-487.
- Alberdi-Pagola, Maria & Poulsen, Søren Erbs & Jensen, Rasmus Lund & Madsen, Søren, 2020. "A case study of the sizing and optimisation of an energy pile foundation (Rosborg, Denmark)," Renewable Energy, Elsevier, vol. 147(P2), pages 2724-2735.
- Liu, Ryan Yin Wai & Taborda, David M.G., 2024. "The effects of thermal interference on the thermal performance of thermo-active pile groups," Renewable Energy, Elsevier, vol. 225(C).
- Cunha, R.P. & Bourne-Webb, P.J., 2022. "A critical review on the current knowledge of geothermal energy piles to sustainably climatize buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
- Paul Christodoulides & Ana Vieira & Stanislav Lenart & João Maranha & Gregor Vidmar & Rumen Popov & Aleksandar Georgiev & Lazaros Aresti & Georgios Florides, 2020. "Reviewing the Modeling Aspects and Practices of Shallow Geothermal Energy Systems," Energies, MDPI, vol. 13(16), pages 1-45, August.
- Maragna, Charles & Loveridge, Fleur, 2019. "A resistive-capacitive model of pile heat exchangers with an application to thermal response tests interpretation," Renewable Energy, Elsevier, vol. 138(C), pages 891-910.
- Sani, Abubakar Kawuwa & Singh, Rao Martand & Amis, Tony & Cavarretta, Ignazio, 2019. "A review on the performance of geothermal energy pile foundation, its design process and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 54-78.
- Meibodi, Saleh S. & Loveridge, Fleur, 2022. "The future role of energy geostructures in fifth generation district heating and cooling networks," Energy, Elsevier, vol. 240(C).
- Zanchini, E. & Lazzari, S., 2014. "New g-functions for the hourly simulation of double U-tube borehole heat exchanger fields," Energy, Elsevier, vol. 70(C), pages 444-455.
- Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2015. "Ground energy balance for borehole heat exchangers: Vertical fluxes, groundwater and storage," Renewable Energy, Elsevier, vol. 83(C), pages 1341-1351.
- Kappler, Genyr & Dias, João Batista & Haeberle, Fernanda & Wander, Paulo Roberto & Moraes, Carlos Alberto Mendes & Modolo, Regina Célia Espinosa, 2019. "Study of an earth-to-water heat exchange system which relies on underground water tanks," Renewable Energy, Elsevier, vol. 133(C), pages 1236-1246.
- Violante, Anna Carmela & Proposito, Marco & Donato, Filippo & Guidi, Giambattista & Falconi, Luca Maria, 2021. "Preliminary study of a closed loop vertical ground source heat pump system for an experimental pilot plant (Rome, Italy)," Renewable Energy, Elsevier, vol. 176(C), pages 415-422.
- Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
- Ana Vieira & Maria Alberdi-Pagola & Paul Christodoulides & Saqib Javed & Fleur Loveridge & Frederic Nguyen & Francesco Cecinato & João Maranha & Georgios Florides & Iulia Prodan & Gust Van Lysebetten , 2017. "Characterisation of Ground Thermal and Thermo-Mechanical Behaviour for Shallow Geothermal Energy Applications," Energies, MDPI, vol. 10(12), pages 1-51, December.
- Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2016. "A finite line source model with Cauchy-type top boundary conditions for simulating near surface effects on borehole heat exchangers," Energy, Elsevier, vol. 98(C), pages 50-63.
- Tang, F. & Lahoori, M. & Nowamooz, H. & Rosin-Paumier, S. & Masrouri, F., 2021. "A numerical study into effects of soil compaction and heat storage on thermal performance of a Horizontal Ground Heat Exchanger," Renewable Energy, Elsevier, vol. 172(C), pages 740-752.
- Tang, Fujiao & Nowamooz, Hossein, 2018. "Long-term performance of a shallow borehole heat exchanger installed in a geothermal field of Alsace region," Renewable Energy, Elsevier, vol. 128(PA), pages 210-222.
- Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
More about this item
Keywords
geothermal; ground heat exchanger; diaphragm wall; screen wall; model validation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:300-:d:306196. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.