IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v154y2020icp476-487.html
   My bibliography  Save this article

Energy diaphragm wall thermal design: The effects of pipe configuration and spacing

Author

Listed:
  • Makasis, Nikolas
  • Narsilio, Guillermo A.

Abstract

Energy geo-structures utilise underground structures primarily designed for structural and geo-mechanical stability to also provide renewable geothermal energy for heating and cooling purposes. Piping is incorporated in the structures to exchange heat with the ground via a carrier (water) and connected to a ground-coupled heat pump on the building side. This work focuses on energy diaphragm walls, expanding on the limited available knowledge and undertaking a comprehensive parametric analysis using experimentally validated numerical modelling. Focus is put on the wall pipe configuration and spacing, which are parameters the geothermal design can directly control, however, the effects of ground thermal conductivity and wall depth are also considered. The wall depth is shown as a critical factor to the thermal performance and low thermal conductivity material sites might require deep energy walls for a cost-effective design. Larger pipe spacing (≥500 mm) appears preferable, despite less piping being placed, since small spacing leads to increased costs but insignificant thermal performance gains. Comparing the horizontal and vertical pipe configurations, relatively small temperature differences of less than 1 °C are found. Moreover, the former can be less expensive for multiple-section deeper walls, while the latter for shorter walls or when construction delays are non-critical.

Suggested Citation

  • Makasis, Nikolas & Narsilio, Guillermo A., 2020. "Energy diaphragm wall thermal design: The effects of pipe configuration and spacing," Renewable Energy, Elsevier, vol. 154(C), pages 476-487.
  • Handle: RePEc:eee:renene:v:154:y:2020:i:c:p:476-487
    DOI: 10.1016/j.renene.2020.02.112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120303074
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.02.112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Florides, Georgios & Kalogirou, Soteris, 2007. "Ground heat exchangers—A review of systems, models and applications," Renewable Energy, Elsevier, vol. 32(15), pages 2461-2478.
    2. Loveridge, Fleur & Powrie, William, 2014. "G-Functions for multiple interacting pile heat exchangers," Energy, Elsevier, vol. 64(C), pages 747-757.
    3. Alavy, Masih & Nguyen, Hiep V. & Leong, Wey H. & Dworkin, Seth B., 2013. "A methodology and computerized approach for optimizing hybrid ground source heat pump system design," Renewable Energy, Elsevier, vol. 57(C), pages 404-412.
    4. Cecinato, Francesco & Loveridge, Fleur A., 2015. "Influences on the thermal efficiency of energy piles," Energy, Elsevier, vol. 82(C), pages 1021-1033.
    5. Barla, Marco & Di Donna, Alice & Santi, Alessandro, 2020. "Energy and mechanical aspects on the thermal activation of diaphragm walls for heating and cooling," Renewable Energy, Elsevier, vol. 147(P2), pages 2654-2663.
    6. Loveridge, Fleur & Powrie, William, 2013. "Temperature response functions (G-functions) for single pile heat exchangers," Energy, Elsevier, vol. 57(C), pages 554-564.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Yishuo & Guo, Yanlong & Wang, Huajun & Wang, Bo & Zhao, Yanting & Shen, Jian, 2023. "Influences of seasonal changes of the ground temperature on the performance of ground heat exchangers embedded in diaphragm walls: A cold climate case from North China," Renewable Energy, Elsevier, vol. 217(C).
    2. Fei, Wenbin & Bandeira Neto, Luis A. & Dai, Sheng & Cortes, Douglas D. & Narsilio, Guillermo A., 2023. "Numerical analyses of energy screw pile filled with phase change materials," Renewable Energy, Elsevier, vol. 202(C), pages 865-879.
    3. Kong, Gangqiang & Dai, Guohao & Zhou, Yang & Yang, Qing, 2024. "Analytical solution model of heat transfer for energy soldier piles during excavation to backfilling," Renewable Energy, Elsevier, vol. 226(C).
    4. Dai, Quanwei & Rotta Loria, Alessandro F. & Choo, Jinhyun, 2022. "Effects of internal airflows on the heat exchange potential and mechanics of energy walls," Renewable Energy, Elsevier, vol. 197(C), pages 1069-1080.
    5. Makasis, Nikolas & Gu, Xiaoying & Kreitmair, Monika J. & Narsilio, Guillermo A. & Choudhary, Ruchi, 2023. "Geothermal pavements: A city-scale investigation on providing sustainable heating for the city of Cardiff, UK," Renewable Energy, Elsevier, vol. 218(C).
    6. Shukla, Saunak & Bayomy, Ayman M. & Antoun, Sylvie & Mwesigye, Aggrey & Leong, Wey H. & Dworkin, Seth B., 2021. "Performance characterization of novel caisson-based thermal storage for ground source heat pumps," Renewable Energy, Elsevier, vol. 174(C), pages 43-54.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    2. Alberdi-Pagola, Maria & Poulsen, Søren Erbs & Jensen, Rasmus Lund & Madsen, Søren, 2020. "A case study of the sizing and optimisation of an energy pile foundation (Rosborg, Denmark)," Renewable Energy, Elsevier, vol. 147(P2), pages 2724-2735.
    3. Li, Min & Lai, Alvin C.K., 2015. "Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales," Applied Energy, Elsevier, vol. 151(C), pages 178-191.
    4. Cunha, R.P. & Bourne-Webb, P.J., 2022. "A critical review on the current knowledge of geothermal energy piles to sustainably climatize buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    5. Maragna, Charles & Loveridge, Fleur, 2019. "A resistive-capacitive model of pile heat exchangers with an application to thermal response tests interpretation," Renewable Energy, Elsevier, vol. 138(C), pages 891-910.
    6. Ida Shafagh & Simon Rees & Iñigo Urra Mardaras & Marina Curto Janó & Merche Polo Carbayo, 2020. "A Model of a Diaphragm Wall Ground Heat Exchanger," Energies, MDPI, vol. 13(2), pages 1-23, January.
    7. Sani, Abubakar Kawuwa & Singh, Rao Martand & Amis, Tony & Cavarretta, Ignazio, 2019. "A review on the performance of geothermal energy pile foundation, its design process and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 54-78.
    8. Ana Vieira & Maria Alberdi-Pagola & Paul Christodoulides & Saqib Javed & Fleur Loveridge & Frederic Nguyen & Francesco Cecinato & João Maranha & Georgios Florides & Iulia Prodan & Gust Van Lysebetten , 2017. "Characterisation of Ground Thermal and Thermo-Mechanical Behaviour for Shallow Geothermal Energy Applications," Energies, MDPI, vol. 10(12), pages 1-51, December.
    9. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    10. Pan, Aiqiang & McCartney, John S. & Lu, Lin & You, Tian, 2020. "A novel analytical multilayer cylindrical heat source model for vertical ground heat exchangers installed in layered ground," Energy, Elsevier, vol. 200(C).
    11. Liu, Ryan Yin Wai & Taborda, David M.G., 2024. "The effects of thermal interference on the thermal performance of thermo-active pile groups," Renewable Energy, Elsevier, vol. 225(C).
    12. Dai, Quanwei & Rotta Loria, Alessandro F. & Choo, Jinhyun, 2022. "Effects of internal airflows on the heat exchange potential and mechanics of energy walls," Renewable Energy, Elsevier, vol. 197(C), pages 1069-1080.
    13. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    14. Zhao, Qiang & Chen, Baoming & Tian, Maocheng & Liu, Fang, 2018. "Investigation on the thermal behavior of energy piles and borehole heat exchangers: A case study," Energy, Elsevier, vol. 162(C), pages 787-797.
    15. Luo, Jin & Zhao, Haifeng & Jia, Jia & Xiang, Wei & Rohn, Joachim & Blum, Philipp, 2017. "Study on operation management of borehole heat exchangers for a large-scale hybrid ground source heat pump system in China," Energy, Elsevier, vol. 123(C), pages 340-352.
    16. Cao, Ziming & Zhang, Guozhu & Liu, Yiping & Zhao, Xu & Li, Chenglin, 2022. "Influence of backfilling phase change material on thermal performance of precast high-strength concrete energy pile," Renewable Energy, Elsevier, vol. 184(C), pages 374-390.
    17. Georgiadis, Konstantinos & Skordas, Dimitrios & Kamas, Ioannis & Comodromos, Emilios, 2020. "Heating and cooling induced stresses and displacements in heat exchanger piles in sand," Renewable Energy, Elsevier, vol. 147(P2), pages 2599-2617.
    18. Law, Ying Lam E. & Dworkin, Seth B., 2016. "Characterization of the effects of borehole configuration and interference with long term ground temperature modelling of ground source heat pumps," Applied Energy, Elsevier, vol. 179(C), pages 1032-1047.
    19. Cardoso de Freitas Murari, Milena & de Hollanda Cavalcanti Tsuha, Cristina & Loveridge, Fleur, 2022. "Investigation on the thermal response of steel pipe energy piles with different backfill materials," Renewable Energy, Elsevier, vol. 199(C), pages 44-61.
    20. Paul Christodoulides & Ana Vieira & Stanislav Lenart & João Maranha & Gregor Vidmar & Rumen Popov & Aleksandar Georgiev & Lazaros Aresti & Georgios Florides, 2020. "Reviewing the Modeling Aspects and Practices of Shallow Geothermal Energy Systems," Energies, MDPI, vol. 13(16), pages 1-45, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:154:y:2020:i:c:p:476-487. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.