IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v78y2014icp639-648.html
   My bibliography  Save this article

Finite cylinder-source model for energy pile heat exchangers: Effects of thermal storage and vertical temperature variations

Author

Listed:
  • Bandos, Tatyana V.
  • Campos-Celador, Álvaro
  • López-González, Luis M.
  • Sala-Lizarraga, José M.

Abstract

A mean integral solution to the FCS (finite cylindrical source) model for ground heat exchangers that takes into account the heat capacity inside the borehole or foundation and allows estimation of temperature field for an arbitrary borehole configuration is presented as a single integral. Approximate expressions for the average temperature over a wide range of time values are derived analytically in the vicinity of both sides of the finite cylindrical surface of heat source. Exact and approximate results for the mean temperature are compared to those calculated at the mid-depth from the exact solution of the same FCS model.

Suggested Citation

  • Bandos, Tatyana V. & Campos-Celador, Álvaro & López-González, Luis M. & Sala-Lizarraga, José M., 2014. "Finite cylinder-source model for energy pile heat exchangers: Effects of thermal storage and vertical temperature variations," Energy, Elsevier, vol. 78(C), pages 639-648.
  • Handle: RePEc:eee:energy:v:78:y:2014:i:c:p:639-648
    DOI: 10.1016/j.energy.2014.10.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214012031
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.10.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cui, Ping & Li, Xin & Man, Yi & Fang, Zhaohong, 2011. "Heat transfer analysis of pile geothermal heat exchangers with spiral coils," Applied Energy, Elsevier, vol. 88(11), pages 4113-4119.
    2. Zarrella, Angelo & De Carli, Michele, 2013. "Heat transfer analysis of short helical borehole heat exchangers," Applied Energy, Elsevier, vol. 102(C), pages 1477-1491.
    3. Pahud, D. & Belliardi, M. & Caputo, P., 2012. "Geocooling potential of borehole heat exchangers' systems applied to low energy office buildings," Renewable Energy, Elsevier, vol. 45(C), pages 197-204.
    4. Wood, Christopher J. & Liu, Hao & Riffat, Saffa B., 2010. "An investigation of the heat pump performance and ground temperature of a piled foundation heat exchanger system for a residential building," Energy, Elsevier, vol. 35(12), pages 4932-4940.
    5. Loveridge, Fleur & Powrie, William, 2013. "Temperature response functions (G-functions) for single pile heat exchangers," Energy, Elsevier, vol. 57(C), pages 554-564.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    2. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    3. Sung, Chihun & Park, Sangwoo & Lee, Seokjae & Oh, Kwanggeun & Choi, Hangseok, 2018. "Thermo-mechanical behavior of cast-in-place energy piles," Energy, Elsevier, vol. 161(C), pages 920-938.
    4. Alberdi-Pagola, Maria & Poulsen, Søren Erbs & Loveridge, Fleur & Madsen, Søren & Jensen, Rasmus Lund, 2018. "Comparing heat flow models for interpretation of precast quadratic pile heat exchanger thermal response tests," Energy, Elsevier, vol. 145(C), pages 721-733.
    5. Christakis Christou & Iosifina I. Stylianou & Lazaros Aresti & Georgios A. Florides & Paul Christodoulides, 2024. "Comparison of the Energy Contributions of Different Types of Ground Heat Exchangers Related to Cost in a Working Ground Source Heat Pump System," Energies, MDPI, vol. 17(18), pages 1-16, September.
    6. Nemati, Nasibeh & Omidvar, Amir & Rosti, Behnam, 2021. "Performance evaluation of a novel hybrid cooling system combining indirect evaporative cooler and earth-air heat exchanger," Energy, Elsevier, vol. 215(PB).
    7. Shen, Junhao & Zhou, Chaohui & Luo, Yongqiang & Tian, Zhiyong & Zhang, Shicong & Fan, Jianhua & Ling, Zhang, 2023. "Comprehensive thermal performance analysis and optimization study on U-type deep borehole ground source heat pump systems based on a new analytical model," Energy, Elsevier, vol. 274(C).
    8. Fadejev, Jevgeni & Simson, Raimo & Kurnitski, Jarek & Haghighat, Fariborz, 2017. "A review on energy piles design, sizing and modelling," Energy, Elsevier, vol. 122(C), pages 390-407.
    9. Carotenuto, Alberto & Ciccolella, Michela & Massarotti, Nicola & Mauro, Alessandro, 2016. "Models for thermo-fluid dynamic phenomena in low enthalpy geothermal energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 330-355.
    10. Luo, Yongqaing & Guo, Hongshan & Meggers, Forrest & Zhang, Ling, 2019. "Deep coaxial borehole heat exchanger: Analytical modeling and thermal analysis," Energy, Elsevier, vol. 185(C), pages 1298-1313.
    11. Cui, Yuanlong & Zhu, Jie & Twaha, Ssennoga & Riffat, Saffa, 2018. "A comprehensive review on 2D and 3D models of vertical ground heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 84-114.
    12. Ana Vieira & Maria Alberdi-Pagola & Paul Christodoulides & Saqib Javed & Fleur Loveridge & Frederic Nguyen & Francesco Cecinato & João Maranha & Georgios Florides & Iulia Prodan & Gust Van Lysebetten , 2017. "Characterisation of Ground Thermal and Thermo-Mechanical Behaviour for Shallow Geothermal Energy Applications," Energies, MDPI, vol. 10(12), pages 1-51, December.
    13. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2016. "A finite line source model with Cauchy-type top boundary conditions for simulating near surface effects on borehole heat exchangers," Energy, Elsevier, vol. 98(C), pages 50-63.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    2. Zhao, Qiang & Chen, Baoming & Tian, Maocheng & Liu, Fang, 2018. "Investigation on the thermal behavior of energy piles and borehole heat exchangers: A case study," Energy, Elsevier, vol. 162(C), pages 787-797.
    3. Li, Min & Lai, Alvin C.K., 2015. "Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales," Applied Energy, Elsevier, vol. 151(C), pages 178-191.
    4. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    5. Go, Gyu-Hyun & Lee, Seung-Rae & Yoon, Seok & Kang, Han-byul, 2014. "Design of spiral coil PHC energy pile considering effective borehole thermal resistance and groundwater advection effects," Applied Energy, Elsevier, vol. 125(C), pages 165-178.
    6. Cunha, R.P. & Bourne-Webb, P.J., 2022. "A critical review on the current knowledge of geothermal energy piles to sustainably climatize buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    7. Song, Xianzhi & Shi, Yu & Li, Gensheng & Yang, Ruiyue & Wang, Gaosheng & Zheng, Rui & Li, Jiacheng & Lyu, Zehao, 2018. "Numerical simulation of heat extraction performance in enhanced geothermal system with multilateral wells," Applied Energy, Elsevier, vol. 218(C), pages 325-337.
    8. Loveridge, Fleur & Powrie, William, 2014. "G-Functions for multiple interacting pile heat exchangers," Energy, Elsevier, vol. 64(C), pages 747-757.
    9. Zarrella, Angelo & Capozza, Antonio & De Carli, Michele, 2013. "Analysis of short helical and double U-tube borehole heat exchangers: A simulation-based comparison," Applied Energy, Elsevier, vol. 112(C), pages 358-370.
    10. Sorranat Ratchawang & Srilert Chotpantarat & Sasimook Chokchai & Isao Takashima & Youhei Uchida & Punya Charusiri, 2022. "A Review of Ground Source Heat Pump Application for Space Cooling in Southeast Asia," Energies, MDPI, vol. 15(14), pages 1-18, July.
    11. Sani, Abubakar Kawuwa & Singh, Rao Martand & Amis, Tony & Cavarretta, Ignazio, 2019. "A review on the performance of geothermal energy pile foundation, its design process and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 54-78.
    12. Bayer, Peter & de Paly, Michael & Beck, Markus, 2014. "Strategic optimization of borehole heat exchanger field for seasonal geothermal heating and cooling," Applied Energy, Elsevier, vol. 136(C), pages 445-453.
    13. Han, Chanjuan & Yu, Xiong (Bill), 2016. "Sensitivity analysis of a vertical geothermal heat pump system," Applied Energy, Elsevier, vol. 170(C), pages 148-160.
    14. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    15. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2016. "A finite line source model with Cauchy-type top boundary conditions for simulating near surface effects on borehole heat exchangers," Energy, Elsevier, vol. 98(C), pages 50-63.
    16. Carotenuto, Alberto & Ciccolella, Michela & Massarotti, Nicola & Mauro, Alessandro, 2016. "Models for thermo-fluid dynamic phenomena in low enthalpy geothermal energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 330-355.
    17. Li, Min & Lai, Alvin C.K., 2012. "New temperature response functions (G functions) for pile and borehole ground heat exchangers based on composite-medium line-source theory," Energy, Elsevier, vol. 38(1), pages 255-263.
    18. Wang, Deqi & Lu, Lin & Zhang, Wenke & Cui, Ping, 2015. "Numerical and analytical analysis of groundwater influence on the pile geothermal heat exchanger with cast-in spiral coils," Applied Energy, Elsevier, vol. 160(C), pages 705-714.
    19. Faizal, Mohammed & Bouazza, Abdelmalek & Singh, Rao M., 2016. "Heat transfer enhancement of geothermal energy piles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 16-33.
    20. Cecinato, Francesco & Loveridge, Fleur A., 2015. "Influences on the thermal efficiency of energy piles," Energy, Elsevier, vol. 82(C), pages 1021-1033.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:78:y:2014:i:c:p:639-648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.