A novel optimization approach of improving energy recovery in retrofitting heat exchanger network with exchanger details
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2012.10.056
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, Yufei & Feng, Xiao & Cai, Yan & Zhu, Maobin & Chu, Khim H., 2009. "Improving a process's efficiency by exploiting heat pockets in its heat exchange network," Energy, Elsevier, vol. 34(11), pages 1925-1932.
- Soltani, Hadi & Shafiei, Sirous, 2011. "Heat exchanger networks retrofit with considering pressure drop by coupling genetic algorithm with LP (linear programming) and ILP (integer linear programming) methods," Energy, Elsevier, vol. 36(5), pages 2381-2391.
- Panjeshahi, Mohammad Hassan & Tahouni, Nassim, 2008. "Pressure drop optimisation in debottlenecking of heat exchanger networks," Energy, Elsevier, vol. 33(6), pages 942-951.
- Rašković, Predrag & Stoiljković, Sreten, 2009. "Pinch design method in the case of a limited number of process streams," Energy, Elsevier, vol. 34(5), pages 593-612.
- Kovač Kralj, Anita, 2010. "Optimization of an industrial retrofitted heat exchanger network, using a stage-wise model," Energy, Elsevier, vol. 35(12), pages 4748-4753.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Liu, Pu & Cui, Guomin & Xiao, Yuan & Chen, Jiaxing, 2018. "A new heuristic algorithm with the step size adjustment strategy for heat exchanger network synthesis," Energy, Elsevier, vol. 143(C), pages 12-24.
- Zhu, Ming & Nan, Wenguang & Wang, Yueshe, 2023. "Analysis on the thermal behaviour of the latent heat storage system using S-CO2 and H-PCM," Renewable Energy, Elsevier, vol. 208(C), pages 240-250.
- Sun, Jin & Feng, Xiao & Wang, Yufei & Deng, Chun & Chu, Khim Hoong, 2014. "Pump network optimization for a cooling water system," Energy, Elsevier, vol. 67(C), pages 506-512.
- Gadalla, Mamdouh A., 2015. "A new graphical method for Pinch Analysis applications: Heat exchanger network retrofit and energy integration," Energy, Elsevier, vol. 81(C), pages 159-174.
- Sreepathi, Bhargava Krishna & Rangaiah, G.P., 2014. "Improved heat exchanger network retrofitting using exchanger reassignment strategies and multi-objective optimization," Energy, Elsevier, vol. 67(C), pages 584-594.
- Tahouni, Nassim & Khoshchehreh, Rezvaneh & Panjeshahi, M. Hassan, 2014. "Debottlenecking of condensate stabilization unit in a gas refinery," Energy, Elsevier, vol. 77(C), pages 742-751.
- Kamel, Dina A. & Gadalla, Mamdouh A. & Abdelaziz, Omar Y. & Labib, Mennat A. & Ashour, Fatma H., 2017. "Temperature driving force (TDF) curves for heat exchanger network retrofit – A case study and implications," Energy, Elsevier, vol. 123(C), pages 283-295.
- Novak Pintarič, Zorka & Kravanja, Zdravko, 2015. "A methodology for the synthesis of heat exchanger networks having large numbers of uncertain parameters," Energy, Elsevier, vol. 92(P3), pages 373-382.
- Pan, Ming & Sikorski, Janusz & Akroyd, Jethro & Mosbach, Sebastian & Lau, Raymond & Kraft, Markus, 2016. "Design technologies for eco-industrial parks: From unit operations to processes, plants and industrial networks," Applied Energy, Elsevier, vol. 175(C), pages 305-323.
- Zhang, B.J. & Li, J. & Zhang, Z.L. & Wang, K. & Chen, Q.L., 2016. "Simultaneous design of heat exchanger network for heat integration using hot direct discharges/feeds between process plants," Energy, Elsevier, vol. 109(C), pages 400-411.
- Pan, Ming & Jamaliniya, Sara & Smith, Robin & Bulatov, Igor & Gough, Martin & Higley, Tom & Droegemueller, Peter, 2013. "New insights to implement heat transfer intensification for shell and tube heat exchangers," Energy, Elsevier, vol. 57(C), pages 208-221.
- Pan, Ming & Bulatov, Igor & Smith, Robin, 2016. "Improving heat recovery in retrofitting heat exchanger networks with heat transfer intensification, pressure drop constraint and fouling mitigation," Applied Energy, Elsevier, vol. 161(C), pages 611-626.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Soltani, Hadi & Shafiei, Sirous, 2011. "Heat exchanger networks retrofit with considering pressure drop by coupling genetic algorithm with LP (linear programming) and ILP (integer linear programming) methods," Energy, Elsevier, vol. 36(5), pages 2381-2391.
- Sreepathi, Bhargava Krishna & Rangaiah, G.P., 2014. "Improved heat exchanger network retrofitting using exchanger reassignment strategies and multi-objective optimization," Energy, Elsevier, vol. 67(C), pages 584-594.
- Pan, Ming & Jamaliniya, Sara & Smith, Robin & Bulatov, Igor & Gough, Martin & Higley, Tom & Droegemueller, Peter, 2013. "New insights to implement heat transfer intensification for shell and tube heat exchangers," Energy, Elsevier, vol. 57(C), pages 208-221.
- Liu, Pu & Cui, Guomin & Xiao, Yuan & Chen, Jiaxing, 2018. "A new heuristic algorithm with the step size adjustment strategy for heat exchanger network synthesis," Energy, Elsevier, vol. 143(C), pages 12-24.
- Kew Hong Chew & Jiří Jaromír Klemeš & Sharifah Rafidah Wan Alwi & Zainuddin Abdul Manan & Andrea Pietro Reverberi, 2015. "Total Site Heat Integration Considering Pressure Drops," Energies, MDPI, vol. 8(2), pages 1-24, February.
- Sun, Jin & Feng, Xiao & Wang, Yufei & Deng, Chun & Chu, Khim Hoong, 2014. "Pump network optimization for a cooling water system," Energy, Elsevier, vol. 67(C), pages 506-512.
- Tahouni, Nassim & Khoshchehreh, Rezvaneh & Panjeshahi, M. Hassan, 2014. "Debottlenecking of condensate stabilization unit in a gas refinery," Energy, Elsevier, vol. 77(C), pages 742-751.
- Lai, Yee Qing & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul, 2019. "Customised retrofit of heat exchanger network combining area distribution and targeted investment," Energy, Elsevier, vol. 179(C), pages 1054-1066.
- Li, Nianqi & Klemeš, Jiří Jaromír & Sunden, Bengt & Wu, Zan & Wang, Qiuwang & Zeng, Min, 2022. "Heat exchanger network synthesis considering detailed thermal-hydraulic performance: Methods and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Teng, Sin Yong & Orosz, Ákos & How, Bing Shen & Jansen, Jeroen J. & Friedler, Ferenc, 2023. "Retrofit heat exchanger network optimization via graph-theoretical approach: Pinch-bounded N-best solutions allows positional swapping," Energy, Elsevier, vol. 283(C).
- Panjeshahi, Mohammad Hassan & Gharaie, Mona & Ataei, Abtin, 2010. "Debottlenecking procedure of effluent thermal treatment system," Energy, Elsevier, vol. 35(12), pages 5202-5208.
- Andiappan, Viknesh & Ng, Denny K.S. & Tan, Raymond R., 2017. "Design Operability and Retrofit Analysis (DORA) framework for energy systems," Energy, Elsevier, vol. 134(C), pages 1038-1052.
- Hong, Xiaodong & Liao, Zuwei & Sun, Jingyuan & Jiang, Binbo & Wang, Jingdai & Yang, Yongrong, 2019. "Transshipment type heat exchanger network model for intra- and inter-plant heat integration using process streams," Energy, Elsevier, vol. 178(C), pages 853-866.
- Wang, Yufei & Zhan, Shihui & Feng, Xiao, 2015. "Optimization of velocity for energy saving and mitigating fouling in a crude oil preheat train with fixed network structure," Energy, Elsevier, vol. 93(P2), pages 1478-1488.
- Picón-Núñez, Martín & Rumbo-Arias, Jamel E., 2021. "Improving thermal energy recovery systems using welded plate heat exchangers," Energy, Elsevier, vol. 235(C).
- Shi, Shaofei & Wang, Yufei & Wang, Youlei & Feng, Xiao, 2022. "A new optimization method for cooling systems considering low-temperature waste heat utilization in a polysilicon industry," Energy, Elsevier, vol. 238(PA).
- Chin, Hon Huin & Wang, Bohong & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír & Zeng, Min & Wang, Qiu-Wang, 2020. "Long-term investment and maintenance planning for heat exchanger network retrofit," Applied Energy, Elsevier, vol. 279(C).
- Wang, Yufei & Feng, Xiao & Cai, Yan & Zhu, Maobin & Chu, Khim H., 2009. "Improving a process's efficiency by exploiting heat pockets in its heat exchange network," Energy, Elsevier, vol. 34(11), pages 1925-1932.
- Valiani, Saba & Tahouni, Nassim & Panjeshahi, M. Hassan, 2017. "Optimization of pre-combustion capture for thermal power plants using Pinch Analysis," Energy, Elsevier, vol. 119(C), pages 950-960.
- Toffolo, Andrea & Lazzaretto, Andrea & von Spakovsky, Michael R., 2012. "On the nature of the heat transfer feasibility constraint in the optimal synthesis/design of complex energy systems," Energy, Elsevier, vol. 41(1), pages 236-243.
More about this item
Keywords
Heat exchanger network (HEN); Retrofit; Energy recovery; Heat transfer intensification; Exchanger details;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:57:y:2013:i:c:p:188-200. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.