IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v51y2013icp422-430.html
   My bibliography  Save this article

Bi-layered and inclined porous collector: Optimum heat and mass transfer

Author

Listed:
  • Hadidi, N.
  • Ould-Amer, Y.
  • Bennacer, R.

Abstract

This paper presents the results of a numerical study of double-diffusive convection in an inclined rectangular collector filled with two parallel porous layers. Each porous layer is considered homogeneous, isotropic and saturated with the same fluid. The vertical walls of porous cavity are subjected to uniform temperature and concentration whereas the other surfaces are assumed to be adiabatic and impermeable. The set of equations governing the heat and mass coupled problem within the enclosure are solved numerically. The numerical results are presented and analyzed in terms of streamlines, isotherms, isoconcentrations lines and average Nusselt and Sherwood numbers. A scale analysis is used to characterize the effect of the permeability ratio on the heat and mass transfer. It is found that the numerical solutions of the full governing equations are in good agreement with the scaling results for some specific conditions. Optimum operating tilted angle are deduced.

Suggested Citation

  • Hadidi, N. & Ould-Amer, Y. & Bennacer, R., 2013. "Bi-layered and inclined porous collector: Optimum heat and mass transfer," Energy, Elsevier, vol. 51(C), pages 422-430.
  • Handle: RePEc:eee:energy:v:51:y:2013:i:c:p:422-430
    DOI: 10.1016/j.energy.2013.01.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213000315
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.01.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rahbar, N. & Esfahani, J.A., 2013. "Productivity estimation of a single-slope solar still: Theoretical and numerical analysis," Energy, Elsevier, vol. 49(C), pages 289-297.
    2. Kim, Young-Min & Shin, Dong-Gil & Lee, Sun-Youp & Favrat, Daniel, 2013. "Isothermal transcritical CO2 cycles with TES (thermal energy storage) for electricity storage," Energy, Elsevier, vol. 49(C), pages 484-501.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hadidi, N. & Bennacer, R. & Ould-amer, Y., 2015. "Two-dimensional thermosolutal natural convective heat and mass transfer in a bi-layered and inclined porous enclosure," Energy, Elsevier, vol. 93(P2), pages 2582-2592.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rashidi, Saman & Akar, Shima & Bovand, Masoud & Ellahi, Rahmat, 2018. "Volume of fluid model to simulate the nanofluid flow and entropy generation in a single slope solar still," Renewable Energy, Elsevier, vol. 115(C), pages 400-410.
    2. Dumka, Pankaj & Mishra, Dhananjay R., 2020. "Performance evaluation of single slope solar still augmented with the ultrasonic fogger," Energy, Elsevier, vol. 190(C).
    3. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
    4. Wang, Liang & Lin, Xipeng & Chai, Lei & Peng, Long & Yu, Dong & Chen, Haisheng, 2019. "Cyclic transient behavior of the Joule–Brayton based pumped heat electricity storage: Modeling and analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 523-534.
    5. Shoeibi, Shahin & Rahbar, Nader & Esfahlani, Ahad Abedini & Kargarsharifabad, Hadi, 2021. "Energy matrices, exergoeconomic and enviroeconomic analysis of air-cooled and water-cooled solar still: Experimental investigation and numerical simulation," Renewable Energy, Elsevier, vol. 171(C), pages 227-244.
    6. Hao, Yinping & He, Qing & Du, Dongmei, 2020. "A trans-critical carbon dioxide energy storage system with heat pump to recover stored heat of compression," Renewable Energy, Elsevier, vol. 152(C), pages 1099-1108.
    7. Saeedi, F. & Sarhaddi, F. & Behzadmehr, A., 2015. "Optimization of a PV/T (photovoltaic/thermal) active solar still," Energy, Elsevier, vol. 87(C), pages 142-152.
    8. Shatar, Nursyahirah Mohd & Sabri, Mohd Faizul Mohd & Salleh, Mohd Faiz Mohd & Ani, Mohd Hanafi, 2023. "Investigation on the performance of solar still with thermoelectric cooling system for various cover material," Renewable Energy, Elsevier, vol. 202(C), pages 844-854.
    9. Baik, Young-Jin & Heo, Jaehyeok & Koo, Junemo & Kim, Minsung, 2014. "The effect of storage temperature on the performance of a thermo-electric energy storage using a transcritical CO2 cycle," Energy, Elsevier, vol. 75(C), pages 204-215.
    10. Zhang, Yuan & Yang, Ke & Hong, Hui & Zhong, Xiaohui & Xu, Jianzhong, 2016. "Thermodynamic analysis of a novel energy storage system with carbon dioxide as working fluid," Renewable Energy, Elsevier, vol. 99(C), pages 682-697.
    11. Crespi, Francesco & Gavagnin, Giacomo & Sánchez, David & Martínez, Gonzalo S., 2017. "Supercritical carbon dioxide cycles for power generation: A review," Applied Energy, Elsevier, vol. 195(C), pages 152-183.
    12. Hao, Yinping & He, Qing & Fu, Hailun & Du, Dongmei & Liu, Wenyi, 2021. "Thermal parameter optimization design of an energy storage system with CO2 as working fluid," Energy, Elsevier, vol. 230(C).
    13. Saleem S. AlSaleem & Ebrahim Al-Qadami & Hussein Zein Korany & Md. Shafiquzzaman & Husnain Haider & Amimul Ahsan & Mohammad Alresheedi & Abdullah AlGhafis & Abdulaziz AlHarbi, 2022. "Computational Fluid Dynamic Applications for Solar Stills Efficiency Assessment: A Review," Sustainability, MDPI, vol. 14(17), pages 1-32, August.
    14. Mahmoud S. El-Sebaey & Asko Ellman & Ahmed Hegazy & Tarek Ghonim, 2020. "Experimental Analysis and CFD Modeling for Conventional Basin-Type Solar Still," Energies, MDPI, vol. 13(21), pages 1-17, November.
    15. Dufour, Thomas & Hoang, Hong Minh & Oignet, Jérémy & Osswald, Véronique & Clain, Pascal & Fournaison, Laurence & Delahaye, Anthony, 2017. "Impact of pressure on the dynamic behavior of CO2 hydrate slurry in a stirred tank reactor applied to cold thermal energy storage," Applied Energy, Elsevier, vol. 204(C), pages 641-652.
    16. Xie, Guo & Sun, Licheng & Yan, Tiantong & Tang, Jiguo & Bao, Jingjing & Du, Min, 2018. "Model development and experimental verification for tubular solar still operating under vacuum condition," Energy, Elsevier, vol. 157(C), pages 115-130.
    17. Chen, W.L. & Xie, G., 2022. "Performance of multi-stage tubular solar still operating under vacuum," Renewable Energy, Elsevier, vol. 201(P2), pages 34-46.
    18. Ibrahim, Ayman G.M. & Allam, Elsayed E. & Elshamarka, Salman E., 2015. "A modified basin type solar still: Experimental performance and economic study," Energy, Elsevier, vol. 93(P1), pages 335-342.
    19. Chandrakant R. Sonawane & Hitesh N. Panchal & Siamak Hoseinzadeh & Mohammad Hadi Ghasemi & Ali Jawad Alrubaie & Ali Sohani, 2022. "Bibliometric Analysis of Solar Desalination Systems Powered by Solar Energy and CFD Modelled," Energies, MDPI, vol. 15(14), pages 1-13, July.
    20. Obai Younis & Ahmed Kadhim Hussein & Mohammed El Hadi Attia & Hakim S. Sultan Aljibori & Lioua Kolsi & Hussein Togun & Bagh Ali & Aissa Abderrahmane & Khanyaluck Subkrajang & Anuwat Jirawattanapanit, 2022. "Comprehensive Review on Solar Stills—Latest Developments and Overview," Sustainability, MDPI, vol. 14(16), pages 1-59, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:51:y:2013:i:c:p:422-430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.