IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v112y2016icp1259-1272.html
   My bibliography  Save this article

Optimizing the efficiency of a solar receiver with tubular cylindrical cavity for a solar-powered organic Rankine cycle

Author

Listed:
  • Loni, R.
  • Kasaeian, A.B.
  • Askari Asli-Ardeh, E.
  • Ghobadian, B.

Abstract

In this study, a solar collector was considered with a cylindrical cavity receiver. The receiver was a type of coated copper closed-tube open cylindrical cavity. Thermal oil was used as the working fluid in the cavity receiver. The affecting parameters including the concentrator shape, concentrator reflectivity, concentrator optical error, solar tracking error, receiver aperture area, receiver tube diameter, cavity receiver depth, inlet temperature and the mass flow rate of the thermal oil through the receiver were investigated. Also, R141b was considered as the working fluid of the ORC system in the condition of saturated vapor. The main focus of this study was on the thermal modeling and optimization of cylindrical cavity receiver. With the help of the ray-tracing software, SolTrace, and the receiver modeling techniques, the optimum aspect ratios are identified. It is conducted that for attaining higher collector efficiency, higher overall efficiency and higher network smaller tube diameter, optimum height of cavity and lower thermal oil inlet temperature are necessary.

Suggested Citation

  • Loni, R. & Kasaeian, A.B. & Askari Asli-Ardeh, E. & Ghobadian, B., 2016. "Optimizing the efficiency of a solar receiver with tubular cylindrical cavity for a solar-powered organic Rankine cycle," Energy, Elsevier, vol. 112(C), pages 1259-1272.
  • Handle: RePEc:eee:energy:v:112:y:2016:i:c:p:1259-1272
    DOI: 10.1016/j.energy.2016.06.109
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216308830
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.06.109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Probert, S.D. & Hussein, Mohey & O'Callaghan, P.W. & Bala, Eli, 1983. "Design optimisation of a solar-energy harnessing system for stimulating an irrigation pump," Applied Energy, Elsevier, vol. 15(4), pages 299-321.
    2. Reddy, K.S. & Natarajan, Sendhil Kumar & Veershetty, G., 2015. "Experimental performance investigation of modified cavity receiver with fuzzy focal solar dish concentrator," Renewable Energy, Elsevier, vol. 74(C), pages 148-157.
    3. Le Roux, W.G. & Bello-Ochende, T. & Meyer, J.P., 2012. "Optimum performance of the small-scale open and direct solar thermal Brayton cycle at various environmental conditions and constraints," Energy, Elsevier, vol. 46(1), pages 42-50.
    4. Riveros-Rosas, David & Sánchez-González, Marcelino & Arancibia-Bulnes, Camilo A. & Estrada, Claudio A., 2011. "Influence of the size of facets on point focus solar concentrators," Renewable Energy, Elsevier, vol. 36(3), pages 966-970.
    5. Le Roux, W.G. & Bello-Ochende, T. & Meyer, J.P., 2011. "Operating conditions of an open and direct solar thermal Brayton cycle with optimised cavity receiver and recuperator," Energy, Elsevier, vol. 36(10), pages 6027-6036.
    6. Neber, Matthew & Lee, Hohyun, 2012. "Design of a high temperature cavity receiver for residential scale concentrated solar power," Energy, Elsevier, vol. 47(1), pages 481-487.
    7. Jing, Li & Gang, Pei & Jie, Ji, 2010. "Optimization of low temperature solar thermal electric generation with Organic Rankine Cycle in different areas," Applied Energy, Elsevier, vol. 87(11), pages 3355-3365, November.
    8. Huang, Weidong & Huang, Farong & Hu, Peng & Chen, Zeshao, 2013. "Prediction and optimization of the performance of parabolic solar dish concentrator with sphere receiver using analytical function," Renewable Energy, Elsevier, vol. 53(C), pages 18-26.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thirunavukkarasu, V. & Cheralathan, M., 2020. "An experimental study on energy and exergy performance of a spiral tube receiver for solar parabolic dish concentrator," Energy, Elsevier, vol. 192(C).
    2. Loni, Reyhaneh & Asli-Ardeh, E. Askari & Ghobadian, B. & Kasaeian, A.B. & Bellos, Evangelos, 2018. "Energy and exergy investigation of alumina/oil and silica/oil nanofluids in hemispherical cavity receiver: Experimental Study," Energy, Elsevier, vol. 164(C), pages 275-287.
    3. Daabo, Ahmed M. & Mahmoud, Saad & Al-Dadah, Raya K. & Ahmad, Abdalqader, 2017. "Numerical investigation of pitch value on thermal performance of solar receiver for solar powered Brayton cycle application," Energy, Elsevier, vol. 119(C), pages 523-539.
    4. Haiping, Chen & Jiguang, Huang & Heng, Zhang & Kai, Liang & Haowen, Liu & Shuangyin, Liang, 2019. "Experimental investigation of a novel low concentrating photovoltaic/thermal–thermoelectric generator hybrid system," Energy, Elsevier, vol. 166(C), pages 83-95.
    5. Loni, Reyhaneh & Mahian, Omid & Markides, Christos N. & Bellos, Evangelos & le Roux, Willem G. & Kasaeian, Ailbakhsh & Najafi, Gholamhassan & Rajaee, Fatemeh, 2021. "A review of solar-driven organic Rankine cycles: Recent challenges and future outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    6. Soltani, Sara & Bonyadi, Mohammad & Madadi Avargani, Vahid, 2019. "A novel optical-thermal modeling of a parabolic dish collector with a helically baffled cylindrical cavity receiver," Energy, Elsevier, vol. 168(C), pages 88-98.
    7. Alireza Rafiei & Reyhaneh Loni & Gholamhassan Najafi & Talal Yusaf, 2020. "Study of PTC System with Rectangular Cavity Receiver with Different Receiver Tube Shapes Using Oil, Water and Air," Energies, MDPI, vol. 13(8), pages 1-24, April.
    8. Garrido, Jorge & Aichmayer, Lukas & Abou-Taouk, Abdallah & Laumert, Björn, 2019. "Experimental and numerical performance analyses of Dish-Stirling cavity receivers: Radiative property study and design," Energy, Elsevier, vol. 169(C), pages 478-488.
    9. Yanping, Zhang & Yuxuan, Chen & Chongzhe, Zou & Hu, Xiao & Falcoz, Quentin & Neveu, Pierre & Cheng, Zhang & Xiaohong, Huang, 2021. "Experimental investigation on heat-transfer characteristics of a cylindrical cavity receiver with pressurized air in helical pipe," Renewable Energy, Elsevier, vol. 163(C), pages 320-330.
    10. Loni, R. & Askari Asli-Ardeh, E. & Ghobadian, B. & Kasaeian, A.B. & Bellos, Evangelos, 2018. "Thermal performance comparison between Al2O3/oil and SiO2/oil nanofluids in cylindrical cavity receiver based on experimental study," Renewable Energy, Elsevier, vol. 129(PA), pages 652-665.
    11. Pratik, Nahyan Ahnaf & Ali, Md. Hasan & Lubaba, Nafisa & Hasan, Nahid & Asaduzzaman, Md. & Miyara, Akio, 2024. "Numerical investigation to optimize the modified cavity receiver for enhancement of thermal performance of solar parabolic dish collector system," Energy, Elsevier, vol. 290(C).
    12. Martínez-Manuel, Leopoldo & Wang, Wujun & Laumert, Björn & Peña-Cruz, Manuel I., 2021. "Numerical analysis on the optical geometrical optimization for an axial type impinging solar receiver," Energy, Elsevier, vol. 216(C).
    13. Chu, Shunzhou & Bai, Fengwu & Zhang, Xiliang & Yang, Bei & Cui, Zhiying & Nie, Fuliang, 2018. "Experimental study and thermal analysis of a tubular pressurized air receiver," Renewable Energy, Elsevier, vol. 125(C), pages 413-424.
    14. Hassan, Atazaz & Quanfang, Chen & Abbas, Sajid & Lu, Wu & Youming, Luo, 2021. "An experimental investigation on thermal and optical analysis of cylindrical and conical cavity copper tube receivers design for solar dish concentrator," Renewable Energy, Elsevier, vol. 179(C), pages 1849-1864.
    15. Loni, R. & Kasaeian, A.B. & Askari Asli-Ardeh, E. & Ghobadian, B. & Gorjian, Sh, 2018. "Experimental and numerical study on dish concentrator with cubical and cylindrical cavity receivers using thermal oil," Energy, Elsevier, vol. 154(C), pages 168-181.
    16. Guobin Cao & Hua Qin & Rajan Ramachandran & Bo Liu, 2019. "Solar Concentrator Consisting of Multiple Aspheric Reflectors," Energies, MDPI, vol. 12(21), pages 1-14, October.
    17. Kasaeian, Alibakhsh & Kouravand, Amir & Vaziri Rad, Mohammad Amin & Maniee, Siavash & Pourfayaz, Fathollah, 2021. "Cavity receivers in solar dish collectors: A geometric overview," Renewable Energy, Elsevier, vol. 169(C), pages 53-79.
    18. Mirzaei, Mohammad Reza & Kasaeian, Alibakhsh & Sadeghi Motlagh, Maryam & Fereidoni, Sahar, 2024. "Thermo-economic analysis of an integrated combined heating, cooling, and power unit with dish collector and organic Rankine cycle," Energy, Elsevier, vol. 296(C).
    19. Al-Nimr, Moh’d Ahmad & Tashtoush, Bourhan & Hasan, Alabas, 2020. "A novel hybrid solar ejector cooling system with thermoelectric generators," Energy, Elsevier, vol. 198(C).
    20. Zayed, Mohamed E. & Zhao, Jun & Li, Wenjia & Elsheikh, Ammar H. & Elaziz, Mohamed Abd, 2021. "A hybrid adaptive neuro-fuzzy inference system integrated with equilibrium optimizer algorithm for predicting the energetic performance of solar dish collector," Energy, Elsevier, vol. 235(C).
    21. Amir Hossein Arkian & Gholamhassan Najafi & Shiva Gorjian & Reyhaneh Loni & Evangelos Bellos & Talal Yusaf, 2019. "Performance Assessment of a Solar Dryer System Using Small Parabolic Dish and Alumina/Oil Nanofluid: Simulation and Experimental Study," Energies, MDPI, vol. 12(24), pages 1-22, December.
    22. T. M. I. Mahlia & H. Syaheed & A. E. Pg Abas & F. Kusumo & A. H. Shamsuddin & Hwai Chyuan Ong & M. R. Bilad, 2019. "Organic Rankine Cycle (ORC) System Applications for Solar Energy: Recent Technological Advances," Energies, MDPI, vol. 12(15), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Loni, R. & Kasaeian, A.B. & Askari Asli-Ardeh, E. & Ghobadian, B. & Gorjian, Sh, 2018. "Experimental and numerical study on dish concentrator with cubical and cylindrical cavity receivers using thermal oil," Energy, Elsevier, vol. 154(C), pages 168-181.
    2. Valdés, Manuel & Abbas, Rubén & Rovira, Antonio & Martín-Aragón, Javier, 2016. "Thermal efficiency of direct, inverse and sCO2 gas turbine cycles intended for small power plants," Energy, Elsevier, vol. 100(C), pages 66-72.
    3. Ji-Qiang Li & Jeong-Tae Kwon & Seon-Jun Jang, 2020. "The Power and Efficiency Analyses of the Cylindrical Cavity Receiver on the Solar Stirling Engine," Energies, MDPI, vol. 13(21), pages 1-17, November.
    4. Skouri, Safa & Ben Haj Ali, Abdessalem & Bouadila, Salwa & Ben Nasrallah, Sassi, 2015. "Optical qualification of a solar parabolic concentrator using photogrammetry technique," Energy, Elsevier, vol. 90(P1), pages 403-416.
    5. Le Roux, W.G. & Bello-Ochende, T. & Meyer, J.P., 2013. "A review on the thermodynamic optimisation and modelling of the solar thermal Brayton cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 677-690.
    6. Mwesigye, Aggrey & Bello-Ochende, Tunde & Meyer, Josua P., 2014. "Heat transfer and thermodynamic performance of a parabolic trough receiver with centrally placed perforated plate inserts," Applied Energy, Elsevier, vol. 136(C), pages 989-1003.
    7. Baloyi, J. & Bello-Ochende, T. & Meyer, J.P., 2014. "Thermodynamic optimisation and computational analysis of irreversibilities in a small-scale wood-fired circulating fluidised bed adiabatic combustor," Energy, Elsevier, vol. 70(C), pages 653-663.
    8. Antonelli, M. & Baccioli, A. & Francesconi, M. & Desideri, U. & Martorano, L., 2015. "Electrical production of a small size Concentrated Solar Power plant with compound parabolic collectors," Renewable Energy, Elsevier, vol. 83(C), pages 1110-1118.
    9. Jianfeng Lu & Yarong Wang & Jing Ding, 2020. "Nonuniform Heat Transfer Model and Performance of Molten Salt Cavity Receiver," Energies, MDPI, vol. 13(4), pages 1-19, February.
    10. Azzouzi, Djelloul & Boumeddane, Boussad & Abene, Abderahmane, 2017. "Experimental and analytical thermal analysis of cylindrical cavity receiver for solar dish," Renewable Energy, Elsevier, vol. 106(C), pages 111-121.
    11. Kasaeian, Alibakhsh & Kouravand, Amir & Vaziri Rad, Mohammad Amin & Maniee, Siavash & Pourfayaz, Fathollah, 2021. "Cavity receivers in solar dish collectors: A geometric overview," Renewable Energy, Elsevier, vol. 169(C), pages 53-79.
    12. Mwesigye, Aggrey & Bello-Ochende, Tunde & Meyer, Josua P., 2013. "Numerical investigation of entropy generation in a parabolic trough receiver at different concentration ratios," Energy, Elsevier, vol. 53(C), pages 114-127.
    13. Goodarzi, Mohsen & Kiasat, Mohsen & Khalilidehkordi, Ehsan, 2014. "Performance analysis of a modified regenerative Brayton and inverse Brayton cycle," Energy, Elsevier, vol. 72(C), pages 35-43.
    14. Thirunavukkarasu, V. & Cheralathan, M., 2020. "An experimental study on energy and exergy performance of a spiral tube receiver for solar parabolic dish concentrator," Energy, Elsevier, vol. 192(C).
    15. Giannuzzi, Alessandra & Diolaiti, Emiliano & Lombini, Matteo & De Rosa, Adriano & Marano, Bruno & Bregoli, Giovanni & Cosentino, Giuseppe & Foppiani, Italo & Schreiber, Laura, 2015. "Enhancing the efficiency of solar concentrators by controlled optical aberrations: Method and photovoltaic application," Applied Energy, Elsevier, vol. 145(C), pages 211-222.
    16. Yang, Song & Wang, Jun & Lund, Peter D. & Jiang, Chuan & Liu, Deli, 2018. "Assessing the impact of optical errors in a novel 2-stage dish concentrator using Monte-Carlo ray-tracing simulation," Renewable Energy, Elsevier, vol. 123(C), pages 603-615.
    17. Baccioli, A. & Antonelli, M. & Desideri, U., 2017. "Technical and economic analysis of organic flash regenerative cycles (OFRCs) for low temperature waste heat recovery," Applied Energy, Elsevier, vol. 199(C), pages 69-87.
    18. Le Roux, W.G. & Bello-Ochende, T. & Meyer, J.P., 2012. "Optimum performance of the small-scale open and direct solar thermal Brayton cycle at various environmental conditions and constraints," Energy, Elsevier, vol. 46(1), pages 42-50.
    19. Wu, Shaobing & Tang, Runsheng & Wang, Changmei, 2021. "Numerical calculation of the intercept factor for parabolic trough solar collector with secondary mirror," Energy, Elsevier, vol. 233(C).
    20. Mehrenjani, Javad Rezazadeh & Gharehghani, Ayat & Ahmadi, Samareh & Powell, Kody M., 2023. "Dynamic simulation of a triple-mode multi-generation system assisted by heat recovery and solar energy storage modules: Techno-economic optimization using machine learning approaches," Applied Energy, Elsevier, vol. 348(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:112:y:2016:i:c:p:1259-1272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.