IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v38y2012i1p425-438.html
   My bibliography  Save this article

Potential energy savings from cool roofs in Spain and Andalusia

Author

Listed:
  • Boixo, Sergio
  • Diaz-Vicente, Marian
  • Colmenar, Antonio
  • Castro, Manuel Alonso

Abstract

Cool roofs are an inexpensive method to save energy and to improve the comfort level in buildings in mild and hot climates. A high scale implementation of cool roofs in Andalusia, in the south of Spain, could potentially save 295,000 kWh per year, considering only residential buildings with flat roofs using electrical heating. At the current energy prices, consumers can save 59 million euros annually in electricity costs and the emission of 136,000 metric tons of CO2 can be directly avoided every year from the production of that electricity. If radiative forcings are considered, Andalucía can potentially offset between 9.44 and 12 Mt of CO2. All the provinces in the rest of Spain are also studied in this paper. The biggest savings are achieved in Gran Canaria (48%), Tenerife (48%), Cádiz (36%), Murcia (33%), Huelva (30%), Málaga (29%), Almería (29%) and Sevilla (28%), where savings are greater than 2 euros per square meter of flat roof for old buildings with dark roofs. For the biggest cities the range of savings obtained are: between 7.4% and 11% in Madrid, between 12% and 18% in Barcelona and between 14% and 20% in Valencia.

Suggested Citation

  • Boixo, Sergio & Diaz-Vicente, Marian & Colmenar, Antonio & Castro, Manuel Alonso, 2012. "Potential energy savings from cool roofs in Spain and Andalusia," Energy, Elsevier, vol. 38(1), pages 425-438.
  • Handle: RePEc:eee:energy:v:38:y:2012:i:1:p:425-438
    DOI: 10.1016/j.energy.2011.11.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211007274
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.11.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Romeo, Luis M. & Calvo, Elena & Valero, Antonio & De Vita, Alessia, 2009. "Electricity consumption and CO2 capture potential in Spain," Energy, Elsevier, vol. 34(9), pages 1341-1350.
    2. Akbari, H & Konopacki, S & Pomerantz, M, 1999. "Cooling energy savings potential of reflective roofs for residential and commercial buildings in the United States," Energy, Elsevier, vol. 24(5), pages 391-407.
    3. Levinson, Ronnen & Akbari, Hashem & Konopacki, Steve & Bretz, Sarah, 2005. "Inclusion of cool roofs in nonresidential Title 24 prescriptive requirements," Energy Policy, Elsevier, vol. 33(2), pages 151-170, January.
    4. Ordóñez, J. & Jadraque, E. & Alegre, J. & Martínez, G., 2010. "Analysis of the photovoltaic solar energy capacity of residential rooftops in Andalusia (Spain)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2122-2130, September.
    5. Izquierdo, M. & Moreno-Rodríguez, A. & González-Gil, A. & García-Hernando, N., 2011. "Air conditioning in the region of Madrid, Spain: An approach to electricity consumption, economics and CO2 emissions," Energy, Elsevier, vol. 36(3), pages 1630-1639.
    6. Gómez, Antonio & Zubizarreta, Javier & Dopazo, César & Fueyo, Norberto, 2011. "Spanish energy roadmap to 2020: Socioeconomic implications of renewable targets," Energy, Elsevier, vol. 36(4), pages 1973-1985.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdel-Salam, Mohamed R.H. & Ge, Gaoming & Fauchoux, Melanie & Besant, Robert W. & Simonson, Carey J., 2014. "State-of-the-art in liquid-to-air membrane energy exchangers (LAMEEs): A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 700-728.
    2. Ahmad Taki & Anastasiya Zakharanka, 2023. "The Impact of Degradation on a Building’s Energy Performance in Hot-Humid Climates," Sustainability, MDPI, vol. 15(2), pages 1-34, January.
    3. Zingre, Kishor T. & Wan, Man Pun & Yang, Xingguo, 2015. "A new RTTV (roof thermal transfer value) calculation method for cool roofs," Energy, Elsevier, vol. 81(C), pages 222-232.
    4. Anna Laura Pisello & Maria Saliari & Konstantina Vasilakopoulou & Shamila Hadad & Mattheos Santamouris, 2018. "Facing the urban overheating: Recent developments. Mitigation potential and sensitivity of the main technologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(4), July.
    5. Abdel-Salam, Mohamed R.H. & Fauchoux, Melanie & Ge, Gaoming & Besant, Robert W. & Simonson, Carey J., 2014. "Expected energy and economic benefits, and environmental impacts for liquid-to-air membrane energy exchangers (LAMEEs) in HVAC systems: A review," Applied Energy, Elsevier, vol. 127(C), pages 202-218.
    6. Elena Cantatore & Fabio Fatiguso, 2021. "An Energy-Resilient Retrofit Methodology to Climate Change for Historic Districts. Application in the Mediterranean Area," Sustainability, MDPI, vol. 13(3), pages 1-32, January.
    7. Gao, Yafeng & Xu, Jiangmin & Yang, Shichao & Tang, Xiaomin & Zhou, Quan & Ge, Jing & Xu, Tengfang & Levinson, Ronnen, 2014. "Cool roofs in China: Policy review, building simulations, and proof-of-concept experiments," Energy Policy, Elsevier, vol. 74(C), pages 190-214.
    8. Qin, Yinghong, 2015. "A review on the development of cool pavements to mitigate urban heat island effect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 445-459.
    9. Badis Bakri & Hani Benguesmia & Ahmed Ketata & Slah Driss & Haythem Nasraoui & Zied Driss, 2024. "Enhancing Sustainable Development: Assessing a Solar Air Heater (SAH) Test Bench through Computational and Experimental Methods," Sustainability, MDPI, vol. 16(14), pages 1-19, July.
    10. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
    11. Mario Maiolo & Behrouz Pirouz & Roberto Bruno & Stefania Anna Palermo & Natale Arcuri & Patrizia Piro, 2020. "The Role of the Extensive Green Roofs on Decreasing Building Energy Consumption in the Mediterranean Climate," Sustainability, MDPI, vol. 12(1), pages 1-13, January.
    12. Zhao, Bin & Hu, Mingke & Ao, Xianze & Huang, Xiaona & Ren, Xiao & Pei, Gang, 2019. "Conventional photovoltaic panel for nocturnal radiative cooling and preliminary performance analysis," Energy, Elsevier, vol. 175(C), pages 677-686.
    13. Choi, Yeri & Lee, Sugie, 2020. "The impact of urban physical environments on cooling rates in summer: Focusing on interaction effects with a kernel-based regularized least squares (KRLS) model," Renewable Energy, Elsevier, vol. 149(C), pages 523-534.
    14. Ahmad Taki & Anastasiya Zakharanka, 2023. "The Effect of Degradation on Cold Climate Building Energy Performance: A Comparison with Hot Climate Buildings," Sustainability, MDPI, vol. 15(8), pages 1-38, April.
    15. Carlos-Antonio Domínguez-Torres & Helena Domínguez-Torres & Antonio Domínguez-Delgado, 2021. "Optimization of a Combination of Thermal Insulation and Cool Roof for the Refurbishment of Social Housing in Southern Spain," Sustainability, MDPI, vol. 13(19), pages 1-32, September.
    16. Qin, Yinghong & Zhang, Mingyi & Hiller, Jacob E., 2017. "Theoretical and experimental studies on the daily accumulative heat gain from cool roofs," Energy, Elsevier, vol. 129(C), pages 138-147.
    17. Athanasios Tzempelikos & Seungjae Lee, 2021. "Cool Roofs in the US: The Impact of Roof Reflectivity, Insulation and Attachment Method on Annual Energy Cost," Energies, MDPI, vol. 14(22), pages 1-17, November.
    18. Ascione, Fabrizio & De Masi, Rosa Francesca & Santamouris, Mattheos & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2018. "Experimental and numerical evaluations on the energy penalty of reflective roofs during the heating season for Mediterranean climate," Energy, Elsevier, vol. 144(C), pages 178-199.
    19. Zingre, Kishor T. & Wan, Man Pun & Wong, Swee Khian & Toh, Winston Boo Thian & Lee, Irene Yen Leng, 2015. "Modelling of cool roof performance for double-skin roofs in tropical climate," Energy, Elsevier, vol. 82(C), pages 813-826.
    20. Zhao, Bin & Wang, Chuyao & Hu, Mingke & Ao, Xianze & Liu, Jie & Xuan, Qingdong & Pei, Gang, 2022. "Light and thermal management of the semi-transparent radiative cooling glass for buildings," Energy, Elsevier, vol. 238(PA).
    21. Roberto Zanetti Freire & Gerson Henrique dos Santos & Leandro dos Santos Coelho, 2017. "Hygrothermal Dynamic and Mould Growth Risk Predictions for Concrete Tiles by Using Least Squares Support Vector Machines," Energies, MDPI, vol. 10(8), pages 1-16, July.
    22. Antonio Dominguez-Delgado & Helena Domínguez-Torres & Carlos-Antonio Domínguez-Torres, 2020. "Energy and Economic Life Cycle Assessment of Cool Roofs Applied to the Refurbishment of Social Housing in Southern Spain," Sustainability, MDPI, vol. 12(14), pages 1-35, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Yafeng & Xu, Jiangmin & Yang, Shichao & Tang, Xiaomin & Zhou, Quan & Ge, Jing & Xu, Tengfang & Levinson, Ronnen, 2014. "Cool roofs in China: Policy review, building simulations, and proof-of-concept experiments," Energy Policy, Elsevier, vol. 74(C), pages 190-214.
    2. Liu, Shih-Yuan & Perng, Yeng-Horng & Ho, Yu-Feng, 2013. "The effect of renewable energy application on Taiwan buildings: What are the challenges and strategies for solar energy exploitation?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 92-106.
    3. Sofia Pastori & Riccardo Mereu & Enrico Sergio Mazzucchelli & Stefano Passoni & Giovanni Dotelli, 2021. "Energy Performance Evaluation of a Ventilated Façade System through CFD Modeling and Comparison with International Standards," Energies, MDPI, vol. 14(1), pages 1-26, January.
    4. Alhazmi, Mansour & Sailor, David J. & Levinson, Ronnen, 2023. "A review of challenges, barriers, and opportunities for large-scale deployment of cool surfaces," Energy Policy, Elsevier, vol. 180(C).
    5. Huang, Pengluan & Hu, Guoqiang & Zhao, Xiaodong & Lu, Luyi & Ding, Honggang & Li, Jianlan, 2022. "Effect of organics on the adhesion of dust to PV panel surfaces under condensation," Energy, Elsevier, vol. 261(PB).
    6. Tian, Shuai & Yang, Guoqiang & Du, Sihong & Zhuang, Dian & Zhu, Ke & Zhou, Xin & Jin, Xing & Ye, Yu & Li, Peixian & Shi, Xing, 2024. "An innovative method for evaluating the urban roof photovoltaic potential based on open-source satellite images," Renewable Energy, Elsevier, vol. 224(C).
    7. Aina Maimó-Far & Alexis Tantet & Víctor Homar & Philippe Drobinski, 2020. "Predictable and Unpredictable Climate Variability Impacts on Optimal Renewable Energy Mixes: The Example of Spain," Energies, MDPI, vol. 13(19), pages 1-25, October.
    8. Hong, Taehoon & Lee, Minhyun & Koo, Choongwan & Jeong, Kwangbok & Kim, Jimin, 2017. "Development of a method for estimating the rooftop solar photovoltaic (PV) potential by analyzing the available rooftop area using Hillshade analysis," Applied Energy, Elsevier, vol. 194(C), pages 320-332.
    9. Oh, Seung Jin & Shahzad, Muhammad Wakil & Burhan, Muhammad & Chun, Wongee & Kian Jon, Chua & KumJa, M. & Ng, Kim Choon, 2019. "Approaches to energy efficiency in air conditioning: A comparative study on purge configurations for indirect evaporative cooling," Energy, Elsevier, vol. 168(C), pages 505-515.
    10. Anna Laura Pisello, 2015. "Experimental Analysis of Cool Traditional Solar Shading Systems for Residential Buildings," Energies, MDPI, vol. 8(3), pages 1-14, March.
    11. Ifaei, Pouya & Tayerani Charmchi, Amir Saman & Loy-Benitez, Jorge & Yang, Rebecca Jing & Yoo, ChangKyoo, 2022. "A data-driven analytical roadmap to a sustainable 2030 in South Korea based on optimal renewable microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    12. Soimakallio, Sampo & Kiviluoma, Juha & Saikku, Laura, 2011. "The complexity and challenges of determining GHG (greenhouse gas) emissions from grid electricity consumption and conservation in LCA (life cycle assessment) – A methodological review," Energy, Elsevier, vol. 36(12), pages 6705-6713.
    13. Park, Hyo Seon & Koo, Choongwan & Hong, Taehoon & Oh, Jeongyoon & Jeong, Kwangbok, 2016. "A finite element model for estimating the techno-economic performance of the building-integrated photovoltaic blind," Applied Energy, Elsevier, vol. 179(C), pages 211-227.
    14. Santos-Alamillos, F.J. & Pozo-Vázquez, D. & Ruiz-Arias, J.A. & Lara-Fanego, V. & Tovar-Pescador, J., 2014. "A methodology for evaluating the spatial variability of wind energy resources: Application to assess the potential contribution of wind energy to baseload power," Renewable Energy, Elsevier, vol. 69(C), pages 147-156.
    15. Alonso, J. & Batlles, F.J., 2014. "Short and medium-term cloudiness forecasting using remote sensing techniques and sky camera imagery," Energy, Elsevier, vol. 73(C), pages 890-897.
    16. Tsang, S.W. & Jim, C.Y., 2011. "Theoretical evaluation of thermal and energy performance of tropical green roofs," Energy, Elsevier, vol. 36(5), pages 3590-3598.
    17. Sánchez-Lozano, J.M. & García-Cascales, M.S. & Lamata, M.T., 2014. "Identification and selection of potential sites for onshore wind farms development in Region of Murcia, Spain," Energy, Elsevier, vol. 73(C), pages 311-324.
    18. Huang, Yu & Niu, Jian-lei & Chung, Tse-ming, 2013. "Study on performance of energy-efficient retrofitting measures on commercial building external walls in cooling-dominant cities," Applied Energy, Elsevier, vol. 103(C), pages 97-108.
    19. Jeongyoon Oh & Taehoon Hong & Hakpyeong Kim & Jongbaek An & Kwangbok Jeong & Choongwan Koo, 2017. "Advanced Strategies for Net-Zero Energy Building: Focused on the Early Phase and Usage Phase of a Building’s Life Cycle," Sustainability, MDPI, vol. 9(12), pages 1-52, December.
    20. Gómez-Amo, J.L. & Freile-Aranda, M.D. & Camarasa, J. & Estellés, V. & Utrillas, M.P. & Martínez-Lozano, J.A., 2019. "Empirical estimates of the radiative impact of an unusually extreme dust and wildfire episode on the performance of a photovoltaic plant in Western Mediterranean," Applied Energy, Elsevier, vol. 235(C), pages 1226-1234.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:38:y:2012:i:1:p:425-438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.