IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i14p5602-d383498.html
   My bibliography  Save this article

Energy and Economic Life Cycle Assessment of Cool Roofs Applied to the Refurbishment of Social Housing in Southern Spain

Author

Listed:
  • Antonio Dominguez-Delgado

    (Department of Applied Mathematics 1, Escuela Técnica Superior de Arquitectura, Universidad de Sevilla, Avda. Reina Mercedes 2, 41012 Sevilla, Spain)

  • Helena Domínguez-Torres

    (Facultad de Económicas, Universidad de Sevilla, Avda. Ramón y Cajal, 41012 Sevilla, Spain)

  • Carlos-Antonio Domínguez-Torres

    (Escuela Técnica Superior de Arquitectura, Universidad de Sevilla, Avda. Reina Mercedes 2, 41012 Sevilla, Spain)

Abstract

Energy refurbishment of the housing stock is needed in order to reduce energy consumption and meet global climate goals. This is even more necessary for social housing built in Spain in the middle of the last century since its obsolete energy conditions lead to situations of indoor thermal discomfort and energy poverty. The present study carries out a life cycle assessment of the energy and economic performance of roofs after being retrofitted to become cool roofs for the promotion of social housing in Seville (Spain). Dynamic simulations are made in which the time dependent aging effect on the energy performance of the refurbished cool roofs is included for the whole lifespan. The influence of the time dependent aging effect on the results of the life cycle economic analysis is also assessed. A variety of scenarios are considered in order to account for the aging effect in the energy performance of the retrofitted cool roofs and its incidence while considering different energy prices and monetary discount rates on the life cycle assessment. This is made through a dynamic life cycle assessment in order to capture the impact of the aging dynamic behavior correctly. Results point out significant savings in the operational energy. However, important differences are found in the economic savings when the life cycle analysis is carried out since the source of energy and the efficiency of the equipment used for conditioning strongly impact the economic results.

Suggested Citation

  • Antonio Dominguez-Delgado & Helena Domínguez-Torres & Carlos-Antonio Domínguez-Torres, 2020. "Energy and Economic Life Cycle Assessment of Cool Roofs Applied to the Refurbishment of Social Housing in Southern Spain," Sustainability, MDPI, vol. 12(14), pages 1-35, July.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:14:p:5602-:d:383498
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/14/5602/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/14/5602/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pasquale Marcello Falcone & Sara González García & Enrica Imbert & Lucía Lijó & María Teresa Moreira & Almona Tani & Valentina Elena Tartiu & Piergiuseppe Morone, 2019. "Transitioning towards the bio‐economy: Assessing the social dimension through a stakeholder lens," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 26(5), pages 1135-1153, September.
    2. Ozel, Meral, 2011. "Effect of wall orientation on the optimum insulation thickness by using a dynamic method," Applied Energy, Elsevier, vol. 88(7), pages 2429-2435, July.
    3. Maria Rosa Trovato & Francesco Nocera & Salvatore Giuffrida, 2020. "Life-Cycle Assessment and Monetary Measurements for the Carbon Footprint Reduction of Public Buildings," Sustainability, MDPI, vol. 12(8), pages 1-25, April.
    4. Lu, Xing & Xu, Peng & Wang, Huilong & Yang, Tao & Hou, Jin, 2016. "Cooling potential and applications prospects of passive radiative cooling in buildings: The current state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1079-1097.
    5. Boixo, Sergio & Diaz-Vicente, Marian & Colmenar, Antonio & Castro, Manuel Alonso, 2012. "Potential energy savings from cool roofs in Spain and Andalusia," Energy, Elsevier, vol. 38(1), pages 425-438.
    6. Claudio Favi & Elisa Di Giuseppe & Marco D’Orazio & Marta Rossi & Michele Germani, 2018. "Building Retrofit Measures and Design: A Probabilistic Approach for LCA," Sustainability, MDPI, vol. 10(10), pages 1-15, October.
    7. Pasquale Marcello Falcone & Enrica Imbert, 2018. "Social Life Cycle Approach as a Tool for Promoting the Market Uptake of Bio-Based Products from a Consumer Perspective," Sustainability, MDPI, vol. 10(4), pages 1-22, March.
    8. Al-Sanea, Sami A. & Zedan, M.F. & Al-Ajlan, Saleh A., 2005. "Effect of electricity tariff on the optimum insulation-thickness in building walls as determined by a dynamic heat-transfer model," Applied Energy, Elsevier, vol. 82(4), pages 313-330, December.
    9. Daouas, Naouel, 2016. "Impact of external longwave radiation on optimum insulation thickness in Tunisian building roofs based on a dynamic analytical model," Applied Energy, Elsevier, vol. 177(C), pages 136-148.
    10. Saafi, Khawla & Daouas, Naouel, 2018. "A life-cycle cost analysis for an optimum combination of cool coating and thermal insulation of residential building roofs in Tunisia," Energy, Elsevier, vol. 152(C), pages 925-938.
    11. Akbari, H. & Konopacki, S., 2005. "Calculating energy-saving potentials of heat-island reduction strategies," Energy Policy, Elsevier, vol. 33(6), pages 721-756, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jung Ho Kim & Young Il Kim, 2021. "Optimal Combination of External Wall Insulation Thickness and Surface Solar Reflectivity of Non-Residential Buildings in the Korean Peninsula," Sustainability, MDPI, vol. 13(6), pages 1-24, March.
    2. Pilar Mercader-Moyano & Paula M. Esquivias, 2020. "Decarbonization and Circular Economy in the Sustainable Development and Renovation of Buildings and Neighbourhoods," Sustainability, MDPI, vol. 12(19), pages 1-6, September.
    3. Isadora Luiza Climaco Cunha & Fábio Rosa & Luiz Kulay, 2021. "Green Coalescent Synthesis Based on the Design for Environment (DfE) Principles: Brazilian Experience," Sustainability, MDPI, vol. 13(22), pages 1-22, November.
    4. Fabiana Frota de Albuquerque Landi & Claudia Fabiani & Anna Laura Pisello & Alessandro Petrozzi & Daniele Milone & Franco Cotana, 2022. "Environmental Assessment of an Innovative High-Performance Experimental Agriculture Field," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    5. Biao Li & Tao Wang & Chunxiao Li & Zhen Dong & Hua Yang & Yi Sun & Pengfei Wang, 2022. "A Strategy for Determining the Decommissioning Life of Energy Equipment Based on Economic Factors and Operational Stability," Sustainability, MDPI, vol. 14(24), pages 1-24, December.
    6. Wen Cao & Lin Yang & Qinyi Zhang & Lihua Chen & Weidong Wu, 2021. "Evaluation of Rural Dwellings’ Energy-Saving Retrofit with Adaptive Thermal Comfort Theory," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    7. Alfonso Marino & Paolo Pariso & Michele Picariello, 2023. "Energy use and End-use Technologies: Organizational and Energy Analysis in Italian Hospitals," International Journal of Energy Economics and Policy, Econjournals, vol. 13(3), pages 36-45, May.
    8. Pirvaram, Atousa & Talebzadeh, Nima & Leung, Siu Ning & O'Brien, Paul G., 2022. "Radiative cooling for buildings: A review of techno-enviro-economics and life-cycle assessment methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlos-Antonio Domínguez-Torres & Helena Domínguez-Torres & Antonio Domínguez-Delgado, 2021. "Optimization of a Combination of Thermal Insulation and Cool Roof for the Refurbishment of Social Housing in Southern Spain," Sustainability, MDPI, vol. 13(19), pages 1-32, September.
    2. Saafi, Khawla & Daouas, Naouel, 2018. "A life-cycle cost analysis for an optimum combination of cool coating and thermal insulation of residential building roofs in Tunisia," Energy, Elsevier, vol. 152(C), pages 925-938.
    3. Qin, Yinghong, 2015. "A review on the development of cool pavements to mitigate urban heat island effect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 445-459.
    4. Axaopoulos, Ioannis & Axaopoulos, Petros & Gelegenis, John, 2014. "Optimum insulation thickness for external walls on different orientations considering the speed and direction of the wind," Applied Energy, Elsevier, vol. 117(C), pages 167-175.
    5. Saafi, Khawla & Daouas, Naouel, 2019. "Energy and cost efficiency of phase change materials integrated in building envelopes under Tunisia Mediterranean climate," Energy, Elsevier, vol. 187(C).
    6. Nils Thonemann & Anna Schulte & Daniel Maga, 2020. "How to Conduct Prospective Life Cycle Assessment for Emerging Technologies? A Systematic Review and Methodological Guidance," Sustainability, MDPI, vol. 12(3), pages 1-23, February.
    7. Daouas, Naouel, 2016. "Impact of external longwave radiation on optimum insulation thickness in Tunisian building roofs based on a dynamic analytical model," Applied Energy, Elsevier, vol. 177(C), pages 136-148.
    8. Berger, Julien & Mendes, Nathan, 2017. "An innovative method for the design of high energy performance building envelopes," Applied Energy, Elsevier, vol. 190(C), pages 266-277.
    9. Maurizio Detommaso & Antonio Gagliano & Luigi Marletta & Francesco Nocera, 2021. "Sustainable Urban Greening and Cooling Strategies for Thermal Comfort at Pedestrian Level," Sustainability, MDPI, vol. 13(6), pages 1-23, March.
    10. Kontoleon, Karolos J. & Saboor, Shaik & Mazzeo, Domenico & Ahmad, Jawad & Cuce, Erdem, 2023. "Thermal sensitivity and potential cooling-related energy saving of masonry walls through the lens of solar heat-rejecting paints at varying orientations," Applied Energy, Elsevier, vol. 329(C).
    11. Sevindir, M. Kemal & Demir, Hakan & Ağra, Özden & Atayılmaz, Ş. Özgür & Teke, İsmail, 2017. "Modelling the optimum distribution of insulation material," Renewable Energy, Elsevier, vol. 113(C), pages 74-84.
    12. Jie, Pengfei & Zhang, Fenghe & Fang, Zhou & Wang, Hongbo & Zhao, Yunfeng, 2018. "Optimizing the insulation thickness of walls and roofs of existing buildings based on primary energy consumption, global cost and pollutant emissions," Energy, Elsevier, vol. 159(C), pages 1132-1147.
    13. Fahlstedt, Oskar & Rasmussen, Freja Nygaard & Temeljotov-Salaj, Alenka & Huang, Lizhen & Bohne, Rolf André, 2024. "Building renovations and life cycle assessment - A scoping literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    14. Gao, Yafeng & Xu, Jiangmin & Yang, Shichao & Tang, Xiaomin & Zhou, Quan & Ge, Jing & Xu, Tengfang & Levinson, Ronnen, 2014. "Cool roofs in China: Policy review, building simulations, and proof-of-concept experiments," Energy Policy, Elsevier, vol. 74(C), pages 190-214.
    15. Shilei Lu & Zichen Wang & Tianshuai Zhang, 2020. "Quantitative Analysis and Multi-Index Evaluation of the Green Building Envelope Performance in the Cold Area of China," Sustainability, MDPI, vol. 12(1), pages 1-38, January.
    16. Qin, Yinghong & Zhang, Mingyi & Hiller, Jacob E., 2017. "Theoretical and experimental studies on the daily accumulative heat gain from cool roofs," Energy, Elsevier, vol. 129(C), pages 138-147.
    17. Ozel, Meral, 2012. "The influence of exterior surface solar absorptivity on thermal characteristics and optimum insulation thickness," Renewable Energy, Elsevier, vol. 39(1), pages 347-355.
    18. Bektas Ekici, Betul & Aytac Gulten, Ayca & Aksoy, U. Teoman, 2012. "A study on the optimum insulation thicknesses of various types of external walls with respect to different materials, fuels and climate zones in Turkey," Applied Energy, Elsevier, vol. 92(C), pages 211-217.
    19. D'Adamo, Idiano & Falcone, Pasquale Marcello & Imbert, Enrica & Morone, Piergiuseppe, 2020. "A Socio-economic Indicator for EoL Strategies for Bio-based Products," Ecological Economics, Elsevier, vol. 178(C).
    20. Zhang, Ji & Yuan, Jianjuan & Liu, Junwei & Zhou, Zhihua & Sui, Jiyuan & Xing, Jincheng & Zuo, Jian, 2021. "Cover shields for sub-ambient radiative cooling: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:14:p:5602-:d:383498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.