IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i12p5250-5259.html
   My bibliography  Save this article

Influence of FeCl3 and lime added to sludge on sludge–coal pyrolysis

Author

Listed:
  • Folgueras, M.B.
  • Díaz, R.M.

Abstract

Copyrolysis of sewage sludge–coal blends at different ratios (0:100, 10:90, 50:50 and 100:0) was investigated using a simultaneous thermogravimetry–mass spectrometry analyser. During copyrolysis three thermal decomposition stages were identified between 180 and 800°C. From 180°C to 385°C, the process is dominated by the sludge pyrolysis. From 385°C to 560°C, the coal is pyrolysed with a lower fraction of the sludge. In the last stage, the coal pyrolysis occurs together with carbonate decomposition. In the operational conditions, copyrolysis occurs with some interactions, which are principally due to the fact that inorganic matter from sludge (mainly lime and FeCl3) affects some secondary reactions. The composition of pyrolysis gas (H2, CO2, H2O, light hydrocarbons, CH3COOH, chlorinated hydrocarbons and HCl) depends on both the temperature and the influence of inorganic products added to sludge in the wastewater treatment plant. The addition of FeCl3 with lime affects the process in two ways: 1) an increase of H2 is produced at 488°C due to lime action on water–gas shift reaction, and 2) an increase of HCl and chlorinated hydrocarbons at 470°C is also produced. The kinetic parameters were determined by using the global reaction model for each one of two first consecutive reaction stages.

Suggested Citation

  • Folgueras, M.B. & Díaz, R.M., 2010. "Influence of FeCl3 and lime added to sludge on sludge–coal pyrolysis," Energy, Elsevier, vol. 35(12), pages 5250-5259.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:12:p:5250-5259
    DOI: 10.1016/j.energy.2010.07.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210004159
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.07.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Min, T.J. & Yoshikawa, K. & Murakami, K., 2005. "Distributed gasification and power generation from solid wastes," Energy, Elsevier, vol. 30(11), pages 2219-2228.
    2. Hamel, Stefan & Hasselbach, Holger & Weil, Steffen & Krumm, Wolfgang, 2007. "Autothermal two-stage gasification of low-density waste-derived fuels," Energy, Elsevier, vol. 32(2), pages 95-107.
    3. Lehtilä, A. & Savolainen, I. & Syri, S., 2005. "The role of technology development in greenhouse gas emissions reduction: The case of Finland," Energy, Elsevier, vol. 30(14), pages 2738-2758.
    4. Haykiri-Acma, H. & Yaman, S., 2010. "Interaction between biomass and different rank coals during co-pyrolysis," Renewable Energy, Elsevier, vol. 35(1), pages 288-292.
    5. Folgueras, M. Belén & Díaz, R. María & Xiberta, Jorge, 2005. "Pyrolysis of blends of different types of sewage sludge with one bituminous coal," Energy, Elsevier, vol. 30(7), pages 1079-1091.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Versan KOK, Mustafa, 2011. "Thermo-oxidative characterization and kinetics of tar sands," Energy, Elsevier, vol. 36(8), pages 5338-5342.
    2. Folgueras, M.B. & Alonso, M. & Díaz, R.M., 2013. "Influence of sewage sludge treatment on pyrolysis and combustion of dry sludge," Energy, Elsevier, vol. 55(C), pages 426-435.
    3. Sever Akdağ, Ayşe & Atak, Onur & Atimtay, Aysel T. & Sanin, Faika Dilek, 2018. "Co-combustion of sewage sludge from different treatment processes and a lignite coal in a laboratory scale combustor," Energy, Elsevier, vol. 158(C), pages 417-426.
    4. Tang, Siqi & Zheng, Chunmiao & Yan, Feng & Shao, Ningning & Tang, Yuanyuan & Zhang, Zuotai, 2018. "Product characteristics and kinetics of sewage sludge pyrolysis driven by alkaline earth metals," Energy, Elsevier, vol. 153(C), pages 921-932.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Si, Mengting & Liu, Jiani & Zhang, Yindi & Liu, Bing & Luo, Zixue & Cheng, Qiang, 2024. "Effect of co-combustion of coal with biomass on the morphology of soot," Renewable Energy, Elsevier, vol. 226(C).
    2. Loha, Chanchal & Chattopadhyay, Himadri & Chatterjee, Pradip K., 2011. "Thermodynamic analysis of hydrogen rich synthetic gas generation from fluidized bed gasification of rice husk," Energy, Elsevier, vol. 36(7), pages 4063-4071.
    3. Kong, Lingjun & Tian, ShuangHong & Li, Zhaohui & Luo, Rongshu & Chen, Dingsheng & Tu, YuTing & Xiong, Ya, 2013. "Conversion of recycled sawdust into high HHV and low NOx emission bio-char pellets using lignin and calcium hydroxide blended binders," Renewable Energy, Elsevier, vol. 60(C), pages 559-565.
    4. Syed-Hassan, Syed Shatir A. & Wang, Yi & Hu, Song & Su, Sheng & Xiang, Jun, 2017. "Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 888-913.
    5. Shweta & Sergio C. Capareda & Baldev Raj Kamboj & Kamla Malik & Karmal Singh & Dalip Kumar Bhisnoi & Sandeep Arya, 2024. "Biomass Resources and Biofuel Technologies: A Focus on Indian Development," Energies, MDPI, vol. 17(2), pages 1-27, January.
    6. Gouws, S.M. & Carrier, M. & Bunt, J.R. & Neomagus, H.W.J.P., 2021. "Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Fehrenbach, Daniel & Merkel, Erik & McKenna, Russell & Karl, Ute & Fichtner, Wolf, 2014. "On the economic potential for electric load management in the German residential heating sector – An optimising energy system model approach," Energy, Elsevier, vol. 71(C), pages 263-276.
    8. Folgueras, M.B. & Alonso, M. & Díaz, R.M., 2013. "Influence of sewage sludge treatment on pyrolysis and combustion of dry sludge," Energy, Elsevier, vol. 55(C), pages 426-435.
    9. Wu, Dongyin & Wang, Yuhao & Wang, Yang & Li, Sen & Wei, Xiaolin, 2016. "Release of alkali metals during co-firing biomass and coal," Renewable Energy, Elsevier, vol. 96(PA), pages 91-97.
    10. Linards Goldšteins & Māris Gunārs Dzenis & Viesturs Šints & Raimonds Valdmanis & Maija Zaķe & Alexandr Arshanitsa, 2022. "Microwave Pre-Treatment and Blending of Biomass Pellets for Sustainable Use of Local Energy Resources in Energy Production," Energies, MDPI, vol. 15(9), pages 1-21, May.
    11. Ji, Xi & Liu, Yifang & Meng, Jing & Wu, Xudong, 2020. "Global supply chain of biomass use and the shift of environmental welfare from primary exploiters to final consumers," Applied Energy, Elsevier, vol. 276(C).
    12. Liu, Zhengang & Quek, Augustine & Parshetti, Ganesh & Jain, Akshay & Srinivasan, M.P. & Hoekman, S. Kent & Balasubramanian, Rajasekhar, 2013. "A study of nitrogen conversion and polycyclic aromatic hydrocarbon (PAH) emissions during hydrochar–lignite co-pyrolysis," Applied Energy, Elsevier, vol. 108(C), pages 74-81.
    13. Afolabi, Oluwasola O.D. & Sohail, M. & Thomas, C.L.P., 2017. "Characterization of solid fuel chars recovered from microwave hydrothermal carbonization of human biowaste," Energy, Elsevier, vol. 134(C), pages 74-89.
    14. Han, Si Woo & Lee, Jeong Jae & Tokmurzin, Diyar & Lee, Seok Hyeong & Nam, Ji Young & Park, Sung Jin & Ra, Ho Won & Mun, Tae-Young & Yoon, Sang Jun & Yoon, Sung Min & Moon, Ji Hong & Lee, Jae Goo & Kim, 2022. "Gasification characteristics of waste plastics (SRF) in a bubbling fluidized bed: Effects of temperature and equivalence ratio," Energy, Elsevier, vol. 238(PC).
    15. Zeng, Xi & Wang, Fang & Li, Hongling & Wang, Yin & Dong, Li & Yu, Jian & Xu, Guangwen, 2014. "Pilot verification of a low-tar two-stage coal gasification process with a fluidized bed pyrolyzer and fixed bed gasifier," Applied Energy, Elsevier, vol. 115(C), pages 9-16.
    16. Yang, Ziqi & Wu, Yuanqing & Zhang, Zisheng & Li, Hong & Li, Xingang & Egorov, Roman I. & Strizhak, Pavel A. & Gao, Xin, 2019. "Recent advances in co-thermochemical conversions of biomass with fossil fuels focusing on the synergistic effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 384-398.
    17. Huang, Qian & Xu, Jiuping, 2020. "Bi-level multi-objective programming approach for carbon emission quota allocation towards co-combustion of coal and sewage sludge," Energy, Elsevier, vol. 211(C).
    18. Kalisz, Sylwester & Pronobis, Marek & Baxter, David, 2008. "Co-firing of biomass waste-derived syngas in coal power boiler," Energy, Elsevier, vol. 33(12), pages 1770-1778.
    19. Hameed, Zeeshan & Aslam, Muhammad & Khan, Zakir & Maqsood, Khuram & Atabani, A.E. & Ghauri, Moinuddin & Khurram, Muhammad Shahzad & Rehan, Mohammad & Nizami, Abdul-Sattar, 2021. "Gasification of municipal solid waste blends with biomass for energy production and resources recovery: Current status, hybrid technologies and innovative prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    20. Pérez-Jeldres, Rubén & Cornejo, Pablo & Flores, Mauricio & Gordon, Alfredo & García, Ximena, 2017. "A modeling approach to co-firing biomass/coal blends in pulverized coal utility boilers: Synergistic effects and emissions profiles," Energy, Elsevier, vol. 120(C), pages 663-674.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:12:p:5250-5259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.