IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i5p2317-2322.html
   My bibliography  Save this article

Effect of low-temperature oxidation on the pyrolysis and combustion of whole oil

Author

Listed:
  • Murugan, Pulikesi
  • Mahinpey, Nader
  • Mani, Thilakavathi
  • Asghari, Koorosh

Abstract

Low-temperature oxidation (LTO) of the Fosterton crude oil mixed with its reservoir sand has been investigated in a tubular reactor. Reservoir sand saturated with 15wt% of crude oil (20.5° API gravity) was subjected to air injection at low-temperature (220°C) for a period of time (17h and 30min), resulting in the formation of an oxygenated hydrocarbon fuel. The vent gases were analyzed for the content of CO, CO2, and oxygen and the residue was analyzed to determine the elemental composition and calorific value. The presence of LTO region was verified from the values of apparent H/C ratio. In addition, thermal behavior and combustion kinetics of the residue was investigated using thermogravimetric analysis (TGA). TG involves both non-isothermal and isothermal analysis and kinetic data was derived from isothermal studies. The general model for nth order reaction was used to obtain the kinetic parameters of the coke oxidation reaction. The activation energy, frequency factor and order of the reactions were determined using the model.

Suggested Citation

  • Murugan, Pulikesi & Mahinpey, Nader & Mani, Thilakavathi & Asghari, Koorosh, 2010. "Effect of low-temperature oxidation on the pyrolysis and combustion of whole oil," Energy, Elsevier, vol. 35(5), pages 2317-2322.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:5:p:2317-2322
    DOI: 10.1016/j.energy.2010.02.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210000769
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.02.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Onyekonwu, M.O. & Falade, G.K., 1989. "Recovery of light oil using in situ combustion thermal recovery methods," Energy, Elsevier, vol. 14(3), pages 153-159.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Versan KOK, Mustafa, 2011. "Thermo-oxidative characterization and kinetics of tar sands," Energy, Elsevier, vol. 36(8), pages 5338-5342.
    2. Yang, Junyu & Xu, Qianghui & Jiang, Hang & Shi, Lin, 2021. "Reaction model of low asphaltene heavy oil from ramped temperature oxidation experimental analyses and numerical simulations," Energy, Elsevier, vol. 219(C).
    3. Khansari, Zeinab & Kapadia, Punitkumar & Mahinpey, Nader & Gates, Ian D., 2014. "A new reaction model for low temperature oxidation of heavy oil: Experiments and numerical modeling," Energy, Elsevier, vol. 64(C), pages 419-428.
    4. Zhao, Shuai & Pu, Wanfen & Peng, Xiaoqiang & Zhang, Jizhou & Ren, Hao, 2021. "Low-temperature oxidation of heavy crude oil characterized by TG, DSC, GC-MS, and negative ion ESI FT-ICR MS," Energy, Elsevier, vol. 214(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:5:p:2317-2322. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.