IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i8p5261-5273.html
   My bibliography  Save this article

On the performances of a hybrid air-conditioning system in different climatic conditions

Author

Listed:
  • Bergero, Stefano
  • Chiari, Anna

Abstract

In previous papers the authors demonstrated that significant energy savings can be achieved in air-conditioning through the use of a hybrid plant in which a vapor-compression inverse cycle is integrated with an air dehumidification system working with hygroscopic solution and hydrophobic membrane. The advantage of this system lies in the fact that the refrigeration device operates at a higher evaporation temperature than that of a traditional system, in which dehumidification is achieved through condensation.

Suggested Citation

  • Bergero, Stefano & Chiari, Anna, 2011. "On the performances of a hybrid air-conditioning system in different climatic conditions," Energy, Elsevier, vol. 36(8), pages 5261-5273.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:8:p:5261-5273
    DOI: 10.1016/j.energy.2011.06.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211004154
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.06.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gandhidasan, P. & Mohandes, M.A., 2011. "Artificial neural network analysis of liquid desiccant dehumidification system," Energy, Elsevier, vol. 36(2), pages 1180-1186.
    2. Yadav, Y.K., 1995. "Vapour-compression and liquid-desiccant hybrid solar space-conditioning system for energy conservation," Renewable Energy, Elsevier, vol. 6(7), pages 719-723.
    3. Mei, L. & Dai, Y.J., 2008. "A technical review on use of liquid-desiccant dehumidification for air-conditioning application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 662-689, April.
    4. Ani, F.N. & Badawi, E.M. & Kannan, K.S., 2005. "The effect of absorber packing height on the performance of a hybrid liquid desiccant system," Renewable Energy, Elsevier, vol. 30(15), pages 2247-2256.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prieto, Alejandro & Knaack, Ulrich & Auer, Thomas & Klein, Tillmann, 2017. "Solar coolfacades: Framework for the integration of solar cooling technologies in the building envelope," Energy, Elsevier, vol. 137(C), pages 353-368.
    2. Elsarrag, Esam & Igobo, Opubo N. & Alhorr, Yousef & Davies, Philip A., 2016. "Solar pond powered liquid desiccant evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 124-140.
    3. Abdel-Salam, Mohamed R.H. & Fauchoux, Melanie & Ge, Gaoming & Besant, Robert W. & Simonson, Carey J., 2014. "Expected energy and economic benefits, and environmental impacts for liquid-to-air membrane energy exchangers (LAMEEs) in HVAC systems: A review," Applied Energy, Elsevier, vol. 127(C), pages 202-218.
    4. Enteria, Napoleon & Yoshino, Hiroshi & Mochida, Akashi, 2013. "Review of the advances in open-cycle absorption air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 265-289.
    5. Abdel-Salam, Ahmed H. & Simonson, Carey J., 2014. "Annual evaluation of energy, environmental and economic performances of a membrane liquid desiccant air conditioning system with/without ERV," Applied Energy, Elsevier, vol. 116(C), pages 134-148.
    6. M. Mujahid Rafique & Shafiqur Rehman & Luai M. Alhems & Aref Lashin, 2016. "Parametric Analysis of a Rotary Type Liquid Desiccant Air Conditioning System," Energies, MDPI, vol. 9(4), pages 1-15, April.
    7. Bigham, Sajjad & Yu, Dazhi & Chugh, Devesh & Moghaddam, Saeed, 2014. "Moving beyond the limits of mass transport in liquid absorbent microfilms through the implementation of surface-induced vortices," Energy, Elsevier, vol. 65(C), pages 621-630.
    8. Chua, K.J. & Chou, S.K. & Yang, W.M. & Yan, J., 2013. "Achieving better energy-efficient air conditioning – A review of technologies and strategies," Applied Energy, Elsevier, vol. 104(C), pages 87-104.
    9. Min-Hwi Kim & Joon-Young Park & Jae-Weon Jeong, 2017. "Energy Saving Potential of a Thermoelectric Heat Pump-Assisted Liquid Desiccant System in a Dedicated Outdoor Air System," Energies, MDPI, vol. 10(9), pages 1-19, September.
    10. Thu, K. & Mitra, S. & Saha, B.B. & Srinivasa Murthy, S., 2018. "Thermodynamic feasibility evaluation of hybrid dehumidification – mechanical vapour compression systems," Applied Energy, Elsevier, vol. 213(C), pages 31-44.
    11. Yinglin, Li & Xiaosong, Zhang & Laizai, Tan & Zhongbin, Zhang & Wei, Wu & Xueying, Xia, 2016. "Performance analysis of a novel liquid desiccant-vapor compression hybrid air-conditioning system," Energy, Elsevier, vol. 109(C), pages 180-189.
    12. Mohammad, Abdulrahman Th. & Bin Mat, Sohif & Sulaiman, M.Y. & Sopian, K. & Al-abidi, Abduljalil A., 2013. "Survey of hybrid liquid desiccant air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 186-200.
    13. Liu, Xiaoli & Qu, Ming & Liu, Xiaobing & Wang, Lingshi, 2019. "Membrane-based liquid desiccant air dehumidification: A comprehensive review on materials, components, systems and performances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 444-466.
    14. Abdel-Salam, Ahmed H. & Simonson, Carey J., 2016. "State-of-the-art in liquid desiccant air conditioning equipment and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1152-1183.
    15. Ghiaus, Christian, 2014. "Linear algebra solution to psychometric analysis of air-conditioning systems," Energy, Elsevier, vol. 74(C), pages 555-566.
    16. Kojok, Farah & Fardoun, Farouk & Younes, Rafic & Outbib, Rachid, 2016. "Hybrid cooling systems: A review and an optimized selection scheme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 57-80.
    17. Gado, Mohamed G. & Ookawara, Shinichi & Nada, Sameh & El-Sharkawy, Ibrahim I., 2021. "Hybrid sorption-vapor compression cooling systems: A comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shukla, Dhruvin L. & Modi, Kalpesh V., 2017. "A technical review on regeneration of liquid desiccant using solar energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 517-529.
    2. Abdel-Salam, Ahmed H. & Simonson, Carey J., 2016. "State-of-the-art in liquid desiccant air conditioning equipment and systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1152-1183.
    3. Min-Hwi Kim & Joon-Young Park & Jae-Weon Jeong, 2017. "Energy Saving Potential of a Thermoelectric Heat Pump-Assisted Liquid Desiccant System in a Dedicated Outdoor Air System," Energies, MDPI, vol. 10(9), pages 1-19, September.
    4. Mohammad, Abdulrahman Th. & Bin Mat, Sohif & Sulaiman, M.Y. & Sopian, K. & Al-abidi, Abduljalil A., 2013. "Survey of hybrid liquid desiccant air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 186-200.
    5. Mei, L. & Dai, Y.J., 2008. "A technical review on use of liquid-desiccant dehumidification for air-conditioning application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 662-689, April.
    6. Yinglin, Li & Xiaosong, Zhang & Laizai, Tan & Zhongbin, Zhang & Wei, Wu & Xueying, Xia, 2016. "Performance analysis of a novel liquid desiccant-vapor compression hybrid air-conditioning system," Energy, Elsevier, vol. 109(C), pages 180-189.
    7. Elsarrag, Esam & Igobo, Opubo N. & Alhorr, Yousef & Davies, Philip A., 2016. "Solar pond powered liquid desiccant evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 124-140.
    8. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
    9. Cui, X. & Islam, M.R. & Mohan, B. & Chua, K.J., 2016. "Theoretical analysis of a liquid desiccant based indirect evaporative cooling system," Energy, Elsevier, vol. 95(C), pages 303-312.
    10. Zhang, Li-Zhi & Zhang, Ning, 2014. "A heat pump driven and hollow fiber membrane-based liquid desiccant air dehumidification system: Modeling and experimental validation," Energy, Elsevier, vol. 65(C), pages 441-451.
    11. Kashish Kumar & Alok Singh, 2022. "Economic and Experimental Assessment of KCOOH Hybrid Liquid Desiccant-Vapor Compression System," Sustainability, MDPI, vol. 14(23), pages 1-25, November.
    12. Fekadu, Geleta & Subudhi, Sudhakar, 2018. "Renewable energy for liquid desiccants air conditioning system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 364-379.
    13. Mahmood, Muhammad H. & Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru & Maisotsenko, Valeriy S., 2016. "Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 537-555.
    14. Zhang, Lun & Wei, Hongyang & Zhang, Xiaosong, 2017. "Theoretical analysis of heat and mass transfer characteristics of a counter-flow packing tower and liquid desiccant dehumidification systems based on entransy theory," Energy, Elsevier, vol. 141(C), pages 661-672.
    15. Gurubalan, A. & Maiya, M.P. & Geoghegan, Patrick J., 2019. "A comprehensive review of liquid desiccant air conditioning system," Applied Energy, Elsevier, vol. 254(C).
    16. Cihan, Ertuğrul & Kavasoğulları, Barış & Demir, Hasan, 2017. "Enhancement of performance of open liquid desiccant system with surface additive," Renewable Energy, Elsevier, vol. 114(PB), pages 1101-1112.
    17. Liu, Wei & Gong, Yanfeng & Niu, Xiaofeng & Shen, Junjie & Kosonen, Risto, 2019. "Dynamic modeling of liquid-desiccant regenerator based on a state–space method," Applied Energy, Elsevier, vol. 240(C), pages 744-753.
    18. Luo, Yimo & Wang, Meng & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2015. "Experimental study of the film thickness in the dehumidifier of a liquid desiccant air conditioning system," Energy, Elsevier, vol. 84(C), pages 239-246.
    19. Wen, Tao & Lu, Lin, 2019. "A review of correlations and enhancement approaches for heat and mass transfer in liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 239(C), pages 757-784.
    20. Enteria, Napoleon & Yoshino, Hiroshi & Mochida, Akashi, 2013. "Review of the advances in open-cycle absorption air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 265-289.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:8:p:5261-5273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.