IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v53y2006i4p481-485.html
   My bibliography  Save this article

Performance characteristics of an irreversible thermally driven Brownian microscopic heat engine

Author

Listed:
  • Y. Zhang
  • B. H. Lin
  • J. C. Chen

Abstract

Brownian particles moving in a spatially asymmetric but periodic potential (ratchet), with an external load force and connected to an alternating hot and cold reservoir, are modeled as a microscopic heat engine, referred to as the Brownian heat engine. The heat flow via both the potential energy and the kinetic energy of the particles are considered simultaneously. The forward and backward particle currents are determined using an Arrhenius' factor. Expressions for the power output and efficiency are derived analytically. The maximum power output and efficiency are calculated. It is expounded that the Brownian heat engine is always irreversible and its efficiency cannot approach the efficiency η C of the Carnot heat engine even in quasistatic limit. The influence of the main parameters such as the load, the barrier height of the potential, the asymmetry of the potential and the temperature ratio of the heat reservoirs on the performance of the Brownian heat engine is discussed in detail. It is found that the Brownian heat engines may be controlled to operate in different regions through variation of some parameters. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Suggested Citation

  • Y. Zhang & B. H. Lin & J. C. Chen, 2006. "Performance characteristics of an irreversible thermally driven Brownian microscopic heat engine," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 53(4), pages 481-485, October.
  • Handle: RePEc:spr:eurphb:v:53:y:2006:i:4:p:481-485
    DOI: 10.1140/epjb/e2006-00399-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1140/epjb/e2006-00399-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1140/epjb/e2006-00399-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Lingen & Ding, Zemin & Sun, Fengrui, 2011. "Model of a total momentum filtered energy selective electron heat pump affected by heat leakage and its performance characteristics," Energy, Elsevier, vol. 36(7), pages 4011-4018.
    2. Chen, Lingen & Qi, Congzheng & Ge, Yanlin & Feng, Huijun, 2022. "Thermal Brownian heat engine with external and internal irreversibilities," Energy, Elsevier, vol. 255(C).
    3. Zemin Ding & Lingen Chen & Fengrui Sun, 2016. "Heating load and COP optimization of a double resonance energy selective electron (ESE) heat pump," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 11(3), pages 383-392.
    4. Qi, Congzheng & Chen, Lingen & Ge, Yanlin & Feng, Huijun, 2023. "Three-heat-reservoir thermal Brownian heat transformer and its performance limits," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:53:y:2006:i:4:p:481-485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.