IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v147y2018icp187-196.html
   My bibliography  Save this article

Entropy generation minimization for CO2 hydrogenation to light olefins

Author

Listed:
  • Chen, Lingen
  • Zhang, Lei
  • Xia, Shaojun
  • Sun, Fengrui

Abstract

An optimization model is established for the reaction process of CO2 hydrogenation to light olefins in a fixed-bed tubular reactor based on finite time thermodynamics or entropy generation minimization theory. In the present study, the specific generation rate (entropy generation rate averaged by the production rate of the target product) is proposed as an optimization objective function and the optimal design parameters which minimize the objective function have been investigated. The model is developed based on the reversible kenetic models and their cooresponding kinetic parameters, which are obtained by fitting the experimental data. The irreversibilities due to heat transfer, chemical reactions and viscous flow are considered and the local entropy generation rate of each term is calculated according to the irreversible thermodynamics. The analyses of the performance characteristics are conducted as well. The results show that the CO2 hydrogenation to light olefins accords with a two-step reaction mechanism, and Fischer-Tropsch reaction is the rate-controlling step. The irreversibility mainly located in the front of the reactor, which most contributions are caused by chemical reactions. The reductions of the specific entropy generation up to 24.78% and 10.04% can be achieved for optimal reactor inner diameter and optimal catalyst bed density, respectively.

Suggested Citation

  • Chen, Lingen & Zhang, Lei & Xia, Shaojun & Sun, Fengrui, 2018. "Entropy generation minimization for CO2 hydrogenation to light olefins," Energy, Elsevier, vol. 147(C), pages 187-196.
  • Handle: RePEc:eee:energy:v:147:y:2018:i:c:p:187-196
    DOI: 10.1016/j.energy.2018.01.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218300616
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.01.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Johannessen, Eivind & Kjelstrup, Signe, 2004. "Minimum entropy production rate in plug flow reactors: An optimal control problem solved for SO2 oxidation," Energy, Elsevier, vol. 29(12), pages 2403-2423.
    2. Liu, Yaqin & Zhao, Guohao & Zhao, Yushan, 2016. "An analysis of Chinese provincial carbon dioxide emission efficiencies based on energy consumption structure," Energy Policy, Elsevier, vol. 96(C), pages 524-533.
    3. Ding, Ze-Min & Chen, Lin-Gen & Ge, Yan-Lin & Sun, Feng-Rui, 2016. "Performance optimization of total momentum filtering double-resonance energy selective electron heat pump," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 49-61.
    4. Saeidi, Samrand & Najari, Sara & Fazlollahi, Farhad & Nikoo, Maryam Khoshtinat & Sefidkon, Fatemeh & Klemeš, Jiří Jaromír & Baxter, Larry L., 2017. "Mechanisms and kinetics of CO2 hydrogenation to value-added products: A detailed review on current status and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1292-1311.
    5. Zhang, Lei & Chen, Lingen & Sun, Fengrui, 2016. "Power optimization of chemically driven heat engine based on first and second order reaction kinetic theory and probability theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 221-230.
    6. Ahmadi, Mohammad Hossein & Ahmadi, Mohammad Ali, 2016. "Multi objective optimization of performance of three-heat-source irreversible refrigerators based algorithm NSGAII," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 784-794.
    7. Wang, Chao & Chen, Lingen & Xia, Shaojun & Sun, Fengrui, 2016. "Maximum production rate optimization for sulphuric acid decomposition process in tubular plug-flow reactor," Energy, Elsevier, vol. 99(C), pages 152-158.
    8. Ahmadi, Mohammad H. & Ahmadi, Mohammad Ali & Sadatsakkak, Seyed Abbas, 2015. "Thermodynamic analysis and performance optimization of irreversible Carnot refrigerator by using multi-objective evolutionary algorithms (MOEAs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1055-1070.
    9. Salamon, P. & Nulton, J.D. & Siragusa, G. & Andersen, T.R. & Limon, A., 2001. "Principles of control thermodynamics," Energy, Elsevier, vol. 26(3), pages 307-319.
    10. Jian Wei & Qingjie Ge & Ruwei Yao & Zhiyong Wen & Chuanyan Fang & Lisheng Guo & Hengyong Xu & Jian Sun, 2017. "Directly converting CO2 into a gasoline fuel," Nature Communications, Nature, vol. 8(1), pages 1-9, August.
    11. Chen, Lingen & Shen, Xun & Xia, Shaojun & Sun, Fengrui, 2017. "Thermodynamic analyses for recovering residual heat of high-temperature basic oxygen gas (BOG) by the methane reforming with carbon dioxide reaction," Energy, Elsevier, vol. 118(C), pages 906-913.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Lingen & Liu, Xiaowei & Ge, Yanlin & Wu, Feng & Feng, Huijun & Xia, Shaojun, 2020. "Power and efficiency optimization of an irreversible quantum Carnot heat engine working with harmonic oscillators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    2. Yin, Yong & Chen, Lingen & Wu, Feng & Ge, Yanlin, 2020. "Work output and thermal efficiency of an endoreversible entangled quantum Stirling engine with one dimensional isotropic Heisenberg model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    3. Chen, Lingen & Liu, Xiaowei & Wu, Feng & Xia, Shaojun & Feng, Huijun, 2020. "Exergy-based ecological optimization of an irreversible quantum Carnot heat pump with harmonic oscillators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    4. Aliabadi, Mohammad Ali Faghih & Lakzian, Esmail & Khazaei, Iman & Jahangiri, Ali, 2020. "A comprehensive investigation of finding the best location for hot steam injection into the wet steam turbine blade cascade," Energy, Elsevier, vol. 190(C).
    5. Chen, Lingen & Yang, Bo & Feng, Huijun & Ge, Yanlin & Xia, Shaojun, 2020. "Performance optimization of an open simple-cycle gas turbine combined cooling, heating and power plant driven by basic oxygen furnace gas in China's steelmaking plants," Energy, Elsevier, vol. 203(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Junle & Chen, Lingen & Ding, Zemin & Sun, Fengrui, 2016. "Analysis and optimization with ecological objective function of irreversible single resonance energy selective electron heat engines," Energy, Elsevier, vol. 111(C), pages 306-312.
    2. Yin, Yong & Chen, Lingen & Wu, Feng & Ge, Yanlin, 2020. "Work output and thermal efficiency of an endoreversible entangled quantum Stirling engine with one dimensional isotropic Heisenberg model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    3. Wang, Chao & Chen, Lingen & Xia, Shaojun & Sun, Fengrui, 2016. "Maximum production rate optimization for sulphuric acid decomposition process in tubular plug-flow reactor," Energy, Elsevier, vol. 99(C), pages 152-158.
    4. Meng, Fankai & Chen, Lingen & Feng, Yuanli & Xiong, Bing, 2017. "Thermoelectric generator for industrial gas phase waste heat recovery," Energy, Elsevier, vol. 135(C), pages 83-90.
    5. Ahmadi, Mohammad H. & Amin Nabakhteh, Mohammad & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah & Bidi, Mokhtar, 2017. "Investigation and optimization of performance of nano-scale Stirling refrigerator using working fluid as Maxwell–Boltzmann gases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 337-350.
    6. Ahmadi, Mohammad H. & Ahmadi, Mohammad-Ali & Maleki, Akbar & Pourfayaz, Fathollah & Bidi, Mokhtar & Açıkkalp, Emin, 2017. "Exergetic sustainability evaluation and multi-objective optimization of performance of an irreversible nanoscale Stirling refrigeration cycle operating with Maxwell–Boltzmann gas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 80-92.
    7. Xia, Shaojun & Chen, Lingen & Sun, Fengrui, 2011. "Power-optimization of non-ideal energy converters under generalized convective heat transfer law via Hamilton-Jacobi-Bellman theory," Energy, Elsevier, vol. 36(1), pages 633-646.
    8. Chen, Lingen & Liu, Xiaowei & Ge, Yanlin & Wu, Feng & Feng, Huijun & Xia, Shaojun, 2020. "Power and efficiency optimization of an irreversible quantum Carnot heat engine working with harmonic oscillators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    9. Ahmadi, Mohammad H. & Jokar, Mohammad Ali & Ming, Tingzhen & Feidt, Michel & Pourfayaz, Fathollah & Astaraei, Fatemeh Razi, 2018. "Multi-objective performance optimization of irreversible molten carbonate fuel cell–Braysson heat engine and thermodynamic analysis with ecological objective approach," Energy, Elsevier, vol. 144(C), pages 707-722.
    10. Chen, Lingen & Liu, Xiaowei & Wu, Feng & Xia, Shaojun & Feng, Huijun, 2020. "Exergy-based ecological optimization of an irreversible quantum Carnot heat pump with harmonic oscillators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    11. Valencia-Ortega, G. & Levario-Medina, S. & Barranco-Jiménez, M.A., 2021. "Local and global stability analysis of a Curzon–Ahlborn model applied to power plants working at maximum k-efficient power," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    12. Yu, Youhong & Ding, Zemin & Chen, Lingen & Wang, Wenhua & Sun, Fengrui, 2016. "Power and efficiency optimization for an energy selective electron heat engine with double-resonance energy filter," Energy, Elsevier, vol. 107(C), pages 287-294.
    13. Shahriyar Abedinnezhad & Mohammad Hossein Ahmadi & Seyed Mohsen Pourkiaei & Fathollah Pourfayaz & Amir Mosavi & Michel Feidt & Shahaboddin Shamshirband, 2019. "Thermodynamic Assessment and Multi-Objective Optimization of Performance of Irreversible Dual-Miller Cycle," Energies, MDPI, vol. 12(20), pages 1-25, October.
    14. Şeker, Betül & Dizaji, Azam Khodadadi & Balci, Volkan & Uzun, Alper, 2021. "MCM-41-supported tungstophosphoric acid as an acid function for dimethyl ether synthesis from CO2 hydrogenation," Renewable Energy, Elsevier, vol. 171(C), pages 47-57.
    15. Ruijing Zheng & Yu Cheng & Haimeng Liu & Wei Chen & Xiaodong Chen & Yaping Wang, 2022. "The Spatiotemporal Distribution and Drivers of Urban Carbon Emission Efficiency: The Role of Technological Innovation," IJERPH, MDPI, vol. 19(15), pages 1-22, July.
    16. Zhou, Yuanchun & Ma, Mengdie & Gao, Peiqi & Xu, Qiming & Bi, Jun & Naren, Tuya, 2019. "Managing water resources from the energy - water nexus perspective under a changing climate: A case study of Jiangsu province, China," Energy Policy, Elsevier, vol. 126(C), pages 380-390.
    17. Yin, Yong & Chen, Lingen & Wu, Feng, 2018. "Performance of quantum Stirling heat engine with numerous copies of extreme relativistic particles confined in 1D potential well," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 58-70.
    18. Wu, Heng & Ge, Yanlin & Chen, Lingen & Feng, Huijun, 2021. "Power, efficiency, ecological function and ecological coefficient of performance optimizations of irreversible Diesel cycle based on finite piston speed," Energy, Elsevier, vol. 216(C).
    19. Chen, Lingen & Sun, Fengrui & Wu, Chih, 2006. "Optimal configuration of a two-heat-reservoir heat-engine with heat-leak and finite thermal-capacity," Applied Energy, Elsevier, vol. 83(2), pages 71-81, February.
    20. Takeshi Tsuji & Masao Sorai & Masashige Shiga & Shigenori Fujikawa & Toyoki Kunitake, 2021. "Geological storage of CO2–N2–O2 mixtures produced by membrane‐based direct air capture (DAC)," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(4), pages 610-618, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:147:y:2018:i:c:p:187-196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.