IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v44y2012i1p570-575.html
   My bibliography  Save this article

Performance optimum analysis and load matching of an energy selective electron heat engine

Author

Listed:
  • Su, Shanhe
  • Guo, Juncheng
  • Su, Guozhen
  • Chen, Jincan

Abstract

A new model of the energy selective electron (ESE) heat engine with a variable bias voltage resulting from a variable load resistance is established. Analytical expressions for the power output and efficiency of the system are derived, based on the Fermi–Dirac distribution of electrons. The general performance characteristics of the system are revealed. The effects of the energy level of the central position of the filter, chemical potential, and load resistance on the performance of the system are discussed in detail. It is found that as long as the position of the filter is suitably designed, the maximum electric current may be obtained at zero load. The optimal values of two important parameters, the energy level of the central position of the filter and chemical potential or load resistance, are calculated for differently operating states, and consequently, two important criteria on the parametric optimum design are obtained. These results obtained here may provide some guidance for the optimum design of ESE heat engines.

Suggested Citation

  • Su, Shanhe & Guo, Juncheng & Su, Guozhen & Chen, Jincan, 2012. "Performance optimum analysis and load matching of an energy selective electron heat engine," Energy, Elsevier, vol. 44(1), pages 570-575.
  • Handle: RePEc:eee:energy:v:44:y:2012:i:1:p:570-575
    DOI: 10.1016/j.energy.2012.05.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212004410
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.05.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yang & Zhou, Zhijun & Zhou, Junhu & Liu, Jianzhong & Wang, Zhihua & Cen, Kefa, 2011. "Micro Newcomen steam engine using two-phase working fluid," Energy, Elsevier, vol. 36(2), pages 917-921.
    2. Nie, Wenjie & Liao, Qinghong & Zhang, ChunQiang & He, Jizhou, 2010. "Micro-/nanoscaled irreversible Otto engine cycle with friction loss and boundary effects and its performance characteristics," Energy, Elsevier, vol. 35(12), pages 4658-4662.
    3. Meng, Fankai & Chen, Lingen & Sun, Fengrui, 2011. "A numerical model and comparative investigation of a thermoelectric generator with multi-irreversibilities," Energy, Elsevier, vol. 36(5), pages 3513-3522.
    4. Chen, Lingen & Ding, Zemin & Sun, Fengrui, 2011. "Model of a total momentum filtered energy selective electron heat pump affected by heat leakage and its performance characteristics," Energy, Elsevier, vol. 36(7), pages 4011-4018.
    5. Khu, Kerwin & Jiang, Liudi & Markvart, Tom, 2011. "Effect of finite heat input on the power performance of micro heat engines," Energy, Elsevier, vol. 36(5), pages 2686-2692.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Du, Jianying & Fu, Tong & Hu, Cong & Su, Shanhe & Chen, Jincan, 2020. "Entropy analyses of electronic devices with different energy selective electron tunnels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    2. Su, Guozhen & Zhang, Yanchao & Cai, Ling & Su, Shanhe & Chen, Jincan, 2015. "Conceptual design and simulation investigation of an electronic cooling device powered by hot electrons," Energy, Elsevier, vol. 90(P2), pages 1842-1847.
    3. Ding, Ze-Min & Chen, Lin-Gen & Wang, Wen-Hua & Ge, Yan-Lin & Sun, Feng-Rui, 2015. "Exploring the operation of a microscopic energy selective electron engine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 431(C), pages 94-108.
    4. Ding, Ze-Min & Chen, Lin-Gen & Ge, Yan-Lin & Sun, Feng-Rui, 2016. "Performance optimization of total momentum filtering double-resonance energy selective electron heat pump," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 49-61.
    5. Su, Guozhen & Liao, Tianjun & Chen, Liwei & Chen, Jincan, 2016. "Performance evaluation and optimum design of a new-type electronic cooling device," Energy, Elsevier, vol. 101(C), pages 421-426.
    6. Su, Shanhe & Chen, Xiaohang & Liao, Tianjun & Chen, Jincan & Shih, Tien-Mo, 2016. "Photon-enhanced electron tunneling solar cells," Energy, Elsevier, vol. 111(C), pages 52-56.
    7. Su, Guozhen & Pan, Yuzhuo & Zhang, Yanchao & Shih, Tien-Mo & Chen, Jincan, 2016. "An electronic cooling device with multiple energy selective tunnels," Energy, Elsevier, vol. 113(C), pages 723-727.
    8. Zhang, Yanchao & Huang, Chuankun & Wang, Junyi & Lin, Guoxing & Chen, Jincan, 2015. "Optimum energy conversion strategies of a nano-scaled three-terminal quantum dot thermoelectric device," Energy, Elsevier, vol. 85(C), pages 200-207.
    9. Zhang, Yanchao & Wang, Yuan & Huang, Chuankun & Lin, Guoxing & Chen, Jincan, 2016. "Thermoelectric performance and optimization of three-terminal quantum dot nano-devices," Energy, Elsevier, vol. 95(C), pages 593-601.
    10. Zhou, Junle & Chen, Lingen & Ding, Zemin & Sun, Fengrui, 2016. "Analysis and optimization with ecological objective function of irreversible single resonance energy selective electron heat engines," Energy, Elsevier, vol. 111(C), pages 306-312.
    11. Wang, Junyi & Wang, Yuan & Su, Shanhe & Chen, Jincan, 2017. "Simulation design and performance evaluation of a thermoelectric refrigerator with inhomogeneously-doped nanomaterials," Energy, Elsevier, vol. 121(C), pages 427-432.
    12. Yu, Youhong & Ding, Zemin & Chen, Lingen & Wang, Wenhua & Sun, Fengrui, 2016. "Power and efficiency optimization for an energy selective electron heat engine with double-resonance energy filter," Energy, Elsevier, vol. 107(C), pages 287-294.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Juncheng & Zhang, Xiuqin & Su, Guozhen & Chen, Jincan, 2012. "The performance analysis of a micro-/nanoscaled quantum heat engine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6432-6439.
    2. Zhang, Yanchao & Huang, Chuankun & Wang, Junyi & Lin, Guoxing & Chen, Jincan, 2015. "Optimum energy conversion strategies of a nano-scaled three-terminal quantum dot thermoelectric device," Energy, Elsevier, vol. 85(C), pages 200-207.
    3. Açıkkalp, Emin & Caner, Necmettin, 2015. "Determining of the optimum performance of a nano scale irreversible Dual cycle with quantum gases as working fluid by using different methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 247-258.
    4. Zhou, Junle & Chen, Lingen & Ding, Zemin & Sun, Fengrui, 2016. "Analysis and optimization with ecological objective function of irreversible single resonance energy selective electron heat engines," Energy, Elsevier, vol. 111(C), pages 306-312.
    5. Ahmadi, Mohammad H. & Amin Nabakhteh, Mohammad & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah & Bidi, Mokhtar, 2017. "Investigation and optimization of performance of nano-scale Stirling refrigerator using working fluid as Maxwell–Boltzmann gases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 337-350.
    6. Lyudmyla Vikhor & Maxim Kotsur, 2023. "Evaluation of Efficiency for Miniscale Thermoelectric Converter under the Influence of Electrical and Thermal Resistance of Contacts," Energies, MDPI, vol. 16(10), pages 1-22, May.
    7. Barry, Matthew & Ying, Justin & Durka, Michael J. & Clifford, Corey E. & Reddy, B.V.K. & Chyu, Minking K., 2016. "Numerical solution of radiation view factors within a thermoelectric device," Energy, Elsevier, vol. 102(C), pages 427-435.
    8. Gou, Xiaolong & Ping, Huifeng & Ou, Qiang & Xiao, Heng & Qing, Shaowei, 2015. "A novel thermoelectric generation system with thermal switch," Applied Energy, Elsevier, vol. 160(C), pages 843-852.
    9. Su, Shanhe & Chen, Xiaohang & Liao, Tianjun & Chen, Jincan & Shih, Tien-Mo, 2016. "Photon-enhanced electron tunneling solar cells," Energy, Elsevier, vol. 111(C), pages 52-56.
    10. Rana, Uttam & Chakraborty, Suman & Som, S.K., 2014. "Thermodynamics of premixed combustion in a heat recirculating micro combustor," Energy, Elsevier, vol. 68(C), pages 510-518.
    11. Weng, Zebin & Liu, Furong & Zhu, Wenchao & Li, Yang & Xie, Changjun & Deng, Jian & Huang, Liang, 2022. "Performance improvement of variable-angle annular thermoelectric generators considering different boundary conditions," Applied Energy, Elsevier, vol. 306(PA).
    12. Favarel, Camille & Bédécarrats, Jean-Pierre & Kousksou, Tarik & Champier, Daniel, 2014. "Numerical optimization of the occupancy rate of thermoelectric generators to produce the highest electrical power," Energy, Elsevier, vol. 68(C), pages 104-116.
    13. Shamshiri, Mehdi & Ashrafizaadeh, Mahmud & Shirani, Ebrahim, 2012. "Advantages and disadvantages associated with introducing an extra rarefied gas layer into a rotating microsystem filled with a liquid lubricant: First and second law analyses," Energy, Elsevier, vol. 45(1), pages 716-728.
    14. Zhang, Shaozhi & Luo, Jielin & Xu, Yiyang & Chen, Guangming & Wang, Qin, 2021. "Thermodynamic analysis of a combined cycle of ammonia-based battery and absorption refrigerator," Energy, Elsevier, vol. 220(C).
    15. He, Wei & Wang, Shixue & Zhang, Xing & Li, Yanzhe & Lu, Chi, 2015. "Optimization design method of thermoelectric generator based on exhaust gas parameters for recovery of engine waste heat," Energy, Elsevier, vol. 91(C), pages 1-9.
    16. He, Zhi-Zhu, 2020. "A coupled electrical-thermal impedance matching model for design optimization of thermoelectric generator," Applied Energy, Elsevier, vol. 269(C).
    17. Zarvandi, Jalal & Tabejamaat, Sadegh & Baigmohammadi, Mohammadreza, 2012. "Numerical study of the effects of heat transfer methods on CH4/(CH4 + H2)-AIR pre-mixed flames in a micro-stepped tube," Energy, Elsevier, vol. 44(1), pages 396-409.
    18. Li, Yueh-Heng & Chen, Guan-Bang & Cheng, Tsarng-Sheng & Yeh, Yean-Ling & Chao, Yei-Chin, 2013. "Combustion characteristics of a small-scale combustor with a percolated platinum emitter tube for thermophotovoltaics," Energy, Elsevier, vol. 61(C), pages 150-157.
    19. Ponnusamy, P. & de Boor, J. & Müller, E., 2020. "Using the constant properties model for accurate performance estimation of thermoelectric generator elements," Applied Energy, Elsevier, vol. 262(C).
    20. Cai, Yeyun & Ding, Ning & Rezania, A. & Deng, Fang & Rosendahl, L. & Chen, Jie, 2023. "A multi-objective optimization in system level for thermoelectric generation system," Energy, Elsevier, vol. 281(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:44:y:2012:i:1:p:570-575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.