Finite-volume modelling of heat and mass transfer during convective drying of porous bodies – Non-conjugate and conjugate formulations involving the aerodynamic effects
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2009.11.008
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sarsavadia, P.N., 2007. "Development of a solar-assisted dryer and evaluation of energy requirement for the drying of onion," Renewable Energy, Elsevier, vol. 32(15), pages 2529-2547.
- Smitabhindu, R. & Janjai, S. & Chankong, V., 2008. "Optimization of a solar-assisted drying system for drying bananas," Renewable Energy, Elsevier, vol. 33(7), pages 1523-1531.
- Dissa, A.O. & Bathiebo, J. & Kam, S. & Savadogo, P.W. & Desmorieux, H. & Koulidiati, J., 2009. "Modelling and experimental validation of thin layer indirect solar drying of mango slices," Renewable Energy, Elsevier, vol. 34(4), pages 1000-1008.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Defraeye, Thijs, 2014. "Advanced computational modelling for drying processes – A review," Applied Energy, Elsevier, vol. 131(C), pages 323-344.
- Lamnatou, Chr. & Papanicolaou, E. & Belessiotis, V. & Kyriakis, N., 2012. "Experimental investigation and thermodynamic performance analysis of a solar dryer using an evacuated-tube air collector," Applied Energy, Elsevier, vol. 94(C), pages 232-243.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
- Tiwari, Sumit & Agrawal, Sanjay & Tiwari, G.N., 2018. "PVT air collector integrated greenhouse dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 142-159.
- VijayaVenkataRaman, S. & Iniyan, S. & Goic, Ranko, 2012. "A review of solar drying technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2652-2670.
- Fudholi, A. & Sopian, K. & Ruslan, M.H. & Alghoul, M.A. & Sulaiman, M.Y., 2010. "Review of solar dryers for agricultural and marine products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 1-30, January.
- Boroze, Tchamye & Desmorieux, Hélène & Méot, Jean-Michel & Marouzé, Claude & Azouma, Yaovi & Napo, Kossi, 2014. "Inventory and comparative characteristics of dryers used in the sub-Saharan zone: Criteria influencing dryer choice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1240-1259.
- Lingayat, Abhay Bhanudas & Chandramohan, V.P. & Raju, V.R.K. & Meda, Venkatesh, 2020. "A review on indirect type solar dryers for agricultural crops – Dryer setup, its performance, energy storage and important highlights," Applied Energy, Elsevier, vol. 258(C).
- Sharma, Atul & Chen, C.R. & Vu Lan, Nguyen, 2009. "Solar-energy drying systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1185-1210, August.
- Tiwari, Sumit & Tiwari, G.N. & Al-Helal, I.M., 2016. "Development and recent trends in greenhouse dryer: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1048-1064.
- Nabnean, S. & Janjai, S. & Thepa, S. & Sudaprasert, K. & Songprakorp, R. & Bala, B.K., 2016. "Experimental performance of a new design of solar dryer for drying osmotically dehydrated cherry tomatoes," Renewable Energy, Elsevier, vol. 94(C), pages 147-156.
- Janjai, Serm & Intawee, Poolsak & Kaewkiew, Jinda & Sritus, Chanoke & Khamvongsa, Vathsana, 2011. "A large-scale solar greenhouse dryer using polycarbonate cover: Modeling and testing in a tropical environment of Lao People’s Democratic Republic," Renewable Energy, Elsevier, vol. 36(3), pages 1053-1062.
- Pietro Catania & Raimondo Gaglio & Santo Orlando & Luca Settanni & Mariangela Vallone, 2020. "Design and Implementation of a Smart System to Control Aromatic Herb Dehydration Process," Agriculture, MDPI, vol. 10(8), pages 1-19, August.
- Singh Chauhan, Prashant & Kumar, Anil & Tekasakul, Perapong, 2015. "Applications of software in solar drying systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1326-1337.
- Dissa, A.O. & Bathiebo, D.J. & Desmorieux, H. & Coulibaly, O. & Koulidiati, J., 2011. "Experimental characterisation and modelling of thin layer direct solar drying of Amelie and Brooks mangoes," Energy, Elsevier, vol. 36(5), pages 2517-2527.
- Dejchanchaiwong, Racha & Kumar, Anil & Tekasakul, Perapong, 2019. "Performance and economic analysis of natural convection based rubber smoking room for rubber cooperatives in Thailand," Renewable Energy, Elsevier, vol. 132(C), pages 233-242.
- Kuan, M. & Shakir, Ye. & Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2019. "Numerical simulation of a heat pump assisted solar dryer for continental climates," Renewable Energy, Elsevier, vol. 143(C), pages 214-225.
- Simo-Tagne, Merlin & Ndukwu, Macmanus Chinenye & Zoulalian, André & Bennamoun, Lyes & Kifani-Sahban, Fatima & Rogaume, Yann, 2020. "Numerical analysis and validation of a natural convection mix-mode solar dryer for drying red chilli under variable conditions," Renewable Energy, Elsevier, vol. 151(C), pages 659-673.
- Dejchanchaiwong, Racha & Tirawanichakul, Yutthana & Tirawanichakul, Supawan & Kumar, Anil & Tekasakul, Perapong, 2017. "Techno-economic assessment of forced-convection rubber smoking room for rubber cooperatives," Energy, Elsevier, vol. 137(C), pages 152-159.
- Kareem, M.W. & Habib, Khairul & Ruslan, M.H. & Saha, Bidyut Baran, 2017. "Thermal performance study of a multi-pass solar air heating collector system for drying of Roselle (Hibiscus sabdariffa)," Renewable Energy, Elsevier, vol. 113(C), pages 281-292.
- Muhumuza, Ronald & Zacharopoulos, Aggelos & Mondol, Jayanta Deb & Smyth, Mervyn & Pugsley, Adrian, 2018. "Energy consumption levels and technical approaches for supporting development of alternative energy technologies for rural sectors of developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 90-102.
- Sandali, Messaoud & Boubekri, Abdelghani & Mennouche, Djamel & Gherraf, Noureddine, 2019. "Improvement of a direct solar dryer performance using a geothermal water heat exchanger as supplementary energetic supply. An experimental investigation and simulation study," Renewable Energy, Elsevier, vol. 135(C), pages 186-196.
More about this item
Keywords
Conjugate heat/mass transfer; Drying model; Finite volume method; Solar dryer;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:7:p:1391-1402. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.