IDEAS home Printed from https://ideas.repec.org/a/oup/ijlctc/v17y2022ip1292-1318..html
   My bibliography  Save this article

Design, development and multi-disciplinary investigations of aerodynamic, structural, energy and exergy factors on 1 kW horizontal-axis wind turbine
[Composite materials for wind power turbine blades]

Author

Listed:
  • Senthil Kumar Madasamy
  • Vijayanandh Raja
  • Hussein A Z AL-bonsrulah
  • Mohammed Al-Bahrani

Abstract

Continually increasing demand for energy, coupled with the need for clean environment, has made it mandatory to fall back on efficient conversion of energy from renewable sources. Wind energy is one of the most viable sources of renewable energy. A wind turbine blade, shaped as an airfoil with a streamlined cross-section, can be graded for its aerodynamic efficiency in terms of lift-to-drag ratio. Optimal design and analysis of blades with different airfoil sections is critical for efficient energy extraction. In this paper, computational fluid dynamics (CFD) is used to predict the aerodynamic efficiency of wind turbine blades. To set the basics right, a detailed review of aerodynamics of the 2D airfoils are undertaken: (a) NACA4412, (b) NACA23012 and (c) NACA63215 airfoils. Additionally, a numerical study on structural analysis for a 1-kW horizontal-axis wind turbine blade using finite element analysis (FEA) to assess the initial failure of NACA 63215 airfoil internal structure after optimization was conducted. In the internal structure of the blade, a single spar was included to make the structure more efficient in bending. Structural optimization resulted in bringing the weight down from an initial weight of 5.6 kg to a final design weight of 1.1 kg, i.e. a net saving of more than 4 kg. In addition stress levels in the model also improved with the failure indices turning toward unity. Optimized structural thicknesses in terms of glass fiber-reinforced plastic (GFRP) layers were found within safe limits. From FEA study and based on the von Mises stress distribution on the pressure and suction sides of wind turbine blade from root to tip, the initial failure was found to occur in the overlap edge of root region when the equivalent stress reached to the ultimate stress of the tip region. It was found that a well-designed GFRPs wind turbine blade is very efficient compared with metals/alloys.

Suggested Citation

  • Senthil Kumar Madasamy & Vijayanandh Raja & Hussein A Z AL-bonsrulah & Mohammed Al-Bahrani, 2022. "Design, development and multi-disciplinary investigations of aerodynamic, structural, energy and exergy factors on 1 kW horizontal-axis wind turbine [Composite materials for wind power turbine blad," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 1292-1318.
  • Handle: RePEc:oup:ijlctc:v:17:y:2022:i::p:1292-1318.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ijlct/ctac091
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yinyin Wang & Suad Hassan Danook & Hussein A.Z. AL-bonsrulah & Dhinakaran Veeman & Fuzhang Wang, 2022. "A Recent and Systematic Review on Water Extraction from the Atmosphere for Arid Zones," Energies, MDPI, vol. 15(2), pages 1-19, January.
    2. Kong, C. & Bang, J. & Sugiyama, Y., 2005. "Structural investigation of composite wind turbine blade considering various load cases and fatigue life," Energy, Elsevier, vol. 30(11), pages 2101-2114.
    3. Kishinami, Koki & Taniguchi, Hiroshi & Suzuki, Jun & Ibano, Hiroshi & Kazunou, Takashi & Turuhami, Masato, 2005. "Theoretical and experimental study on the aerodynamic characteristics of a horizontal axis wind turbine," Energy, Elsevier, vol. 30(11), pages 2089-2100.
    4. Rohini Janaki Balamurugan & Hussein A Z AL-bonsrulah & Vijayanandh Raja & Lokeshkumar Kumar & Sri Diviyalakshmi Kannan & Senthil Kumar Madasamy & Raffik Rasheed & Parvathy Rajendran & Mohammed Al-Bahr, 2022. "Design and multiperspectivity-based performance investigations of H-Darrieus vertical axis wind turbine through computational fluid dynamics adopted with moving reference frame approaches [Numerica," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 784-806.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter J. Schubel & Richard J. Crossley, 2012. "Wind Turbine Blade Design," Energies, MDPI, vol. 5(9), pages 1-25, September.
    2. Beganovic, Nejra & Söffker, Dirk, 2016. "Structural health management utilization for lifetime prognosis and advanced control strategy deployment of wind turbines: An overview and outlook concerning actual methods, tools, and obtained result," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 68-83.
    3. Rocha, P. A. Costa & Rocha, H. H. Barbosa & Carneiro, F. O. Moura & da Silva, M. E. Vieira & de Andrade, C. Freitas, 2016. "A case study on the calibration of the k–ω SST (shear stress transport) turbulence model for small scale wind turbines designed with cambered and symmetrical airfoils," Energy, Elsevier, vol. 97(C), pages 144-150.
    4. Xiao Chen & Wei Zhao & Xiao Lu Zhao & Jian Zhong Xu, 2014. "Failure Test and Finite Element Simulation of a Large Wind Turbine Composite Blade under Static Loading," Energies, MDPI, vol. 7(4), pages 1-24, April.
    5. Imraan, Mustahib & Sharma, Rajnish N. & Flay, Richard G.J., 2013. "Wind tunnel testing of a wind turbine with telescopic blades: The influence of blade extension," Energy, Elsevier, vol. 53(C), pages 22-32.
    6. Fei-Bin Hsiao & Chi-Jeng Bai & Wen-Tong Chong, 2013. "The Performance Test of Three Different Horizontal Axis Wind Turbine (HAWT) Blade Shapes Using Experimental and Numerical Methods," Energies, MDPI, vol. 6(6), pages 1-20, June.
    7. Huang, Haoda & Liu, Qingsong & Yue, Minnan & Miao, Weipao & Wang, Peilin & Li, Chun, 2023. "Fully coupled aero-hydrodynamic analysis of a biomimetic fractal semi-submersible floating offshore wind turbine under wind-wave excitation conditions," Renewable Energy, Elsevier, vol. 203(C), pages 280-300.
    8. Ahmed Almasarani & Imtiaz K. Ahmad & Mohamed F. El-Amin & Tayeb Brahimi, 2022. "Experimental Investigations and Modeling of Atmospheric Water Generation Using a Desiccant Material," Energies, MDPI, vol. 15(18), pages 1-19, September.
    9. Li, Qing'an & Cai, Chang & Kamada, Yasunari & Maeda, Takao & Hiromori, Yuto & Zhou, Shuni & Xu, Jianzhong, 2021. "Prediction of power generation of two 30 kW Horizontal Axis Wind Turbines with Gaussian model," Energy, Elsevier, vol. 231(C).
    10. Yang, Jinshui & Peng, Chaoyi & Xiao, Jiayu & Zeng, Jingcheng & Yuan, Yun, 2012. "Application of videometric technique to deformation measurement for large-scale composite wind turbine blade," Applied Energy, Elsevier, vol. 98(C), pages 292-300.
    11. Philipp R Thies & Lars Johanning & Kwaku Ampea Karikari-Boateng & Chong Ng & Paul McKeever, 2015. "Component reliability test approaches for marine renewable energy," Journal of Risk and Reliability, , vol. 229(5), pages 403-416, October.
    12. Han, Wanlong & Yan, Peigang & Han, Wanjin & He, Yurong, 2015. "Design of wind turbines with shroud and lobed ejectors for efficient utilization of low-grade wind energy," Energy, Elsevier, vol. 89(C), pages 687-701.
    13. Nak Joon Choi & Sang Hyun Nam & Jong Hyun Jeong & Kyung Chun Kim, 2014. "CFD Study on Aerodynamic Power Output Changes with Inter-Turbine Spacing Variation for a 6 MW Offshore Wind Farm," Energies, MDPI, vol. 7(11), pages 1-16, November.
    14. Habibi, Hossein & Cheng, Liang & Zheng, Haitao & Kappatos, Vassilios & Selcuk, Cem & Gan, Tat-Hean, 2015. "A dual de-icing system for wind turbine blades combining high-power ultrasonic guided waves and low-frequency forced vibrations," Renewable Energy, Elsevier, vol. 83(C), pages 859-870.
    15. Małgorzata Stępień & Michał Kulak & Krzysztof Jóźwik, 2020. "“Fast Track” Analysis of Small Wind Turbine Blade Performance," Energies, MDPI, vol. 13(21), pages 1-16, November.
    16. Xie, Wei & Zeng, Pan & Lei, Liping, 2015. "Wind tunnel experiments for innovative pitch regulated blade of horizontal axis wind turbine," Energy, Elsevier, vol. 91(C), pages 1070-1080.
    17. Jie Zhu & Xin Cai & Pan Pan & Rongrong Gu, 2014. "Multi-Objective Structural Optimization Design of Horizontal-Axis Wind Turbine Blades Using the Non-Dominated Sorting Genetic Algorithm II and Finite Element Method," Energies, MDPI, vol. 7(2), pages 1-15, February.
    18. Lu, Liang & Wu, Haijun & Wu, Jianzhong, 2021. "A case study for the optimization of moment-matching in wind turbine blade fatigue tests with a resonant type exciting approach," Renewable Energy, Elsevier, vol. 174(C), pages 769-785.
    19. Dai, Juchuan & Li, Mimi & Chen, Huanguo & He, Tao & Zhang, Fan, 2022. "Progress and challenges on blade load research of large-scale wind turbines," Renewable Energy, Elsevier, vol. 196(C), pages 482-496.
    20. Jiang, Wenchun & Fan, Qinshan & Gong, Jianming, 2010. "Optimization of welding joint between tower and bottom flange based on residual stress considerations in a wind turbine," Energy, Elsevier, vol. 35(1), pages 461-467.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ijlctc:v:17:y:2022:i::p:1292-1318.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/ijlct .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.