IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i8p3483-3500.html
   My bibliography  Save this article

A numerical evaluation of combustion in porous media by EGM (Entropy Generation Minimization)

Author

Listed:
  • Bidi, M.
  • Nobari, M.R.H.
  • Avval, M. Saffar

Abstract

Combustion in Porous Media provides interesting advantages compared with the free flame combustion due to the higher burning rates, increased power dynamic range, the extension of lean flammability limits, and the low emissions of pollutants. A numerical code is developed in order to evaluate the effects of different parameters of combustion in porous media. The governing equations including Navier–Stokes, the solid and gas energy and the chemical species transport equations are solved using a multi-step reduced kinetic mechanism. Flame stabilization and the burner optimization are studied by EGM (Entropy Generation Minimization) method considering the effects of chemical affinities and reaction. It is found that the flames occurring at the upstream half of the porous layer are more stable and more efficient, producing less emissions than those occur at the downstream half of porous layer. Also at a specified equivalence ratio both the heat recirculation efficiency and the Merit number have similar trend by changing the flame location. For a FFL (Fixed Flame Location), there is an optimum value of equivalence ratio at which the burner efficiency is a maximum.

Suggested Citation

  • Bidi, M. & Nobari, M.R.H. & Avval, M. Saffar, 2010. "A numerical evaluation of combustion in porous media by EGM (Entropy Generation Minimization)," Energy, Elsevier, vol. 35(8), pages 3483-3500.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:8:p:3483-3500
    DOI: 10.1016/j.energy.2010.04.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210002616
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.04.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rakopoulos, C.D. & Michos, C.N. & Giakoumis, E.G., 2008. "Availability analysis of a syngas fueled spark ignition engine using a multi-zone combustion model," Energy, Elsevier, vol. 33(9), pages 1378-1398.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Safari, Mehdi & Sheikhi, M. Reza H., 2014. "Large eddy simulation-based analysis of entropy generation in a turbulent nonpremixed flame," Energy, Elsevier, vol. 78(C), pages 451-457.
    2. Sciacovelli, A. & Verda, V. & Sciubba, E., 2015. "Entropy generation analysis as a design tool—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1167-1181.
    3. Adrian Bejan & George Tsatsaronis, 2021. "Purpose in Thermodynamics," Energies, MDPI, vol. 14(2), pages 1-25, January.
    4. Xu, Mingtian, 2012. "Variational principles in terms of entransy for heat transfer," Energy, Elsevier, vol. 44(1), pages 973-977.
    5. Asinari, Pietro & Chiavazzo, Eliodoro, 2014. "The notion of energy through multiple scales: From a molecular level to fluid flows and beyond," Energy, Elsevier, vol. 68(C), pages 870-876.
    6. Guo, Zhihao & Deng, Shuai & Zhu, Yu & Zhao, Li & Yuan, Xiangzhou & Li, Shuangjun & Chen, Lijin, 2020. "Non-equilibrium thermodynamic analysis of adsorption carbon capture: Contributors, mechanisms and verification of entropy generation," Energy, Elsevier, vol. 208(C).
    7. Murtada A. Elhaj & Syed A. Imtiaz & Greg F. Naterer & Sohrab Zendehboudi, 2023. "Entropy Generation Minimization of Two-Phase Flow Irreversibilities in Hydrocarbon Reservoirs," Energies, MDPI, vol. 16(10), pages 1-20, May.
    8. Wang, Hongmin & Wei, Chunzhi & Zhao, Pinghui & Ye, Taohong, 2014. "Experimental study on temperature variation in a porous inert media burner for premixed methane air combustion," Energy, Elsevier, vol. 72(C), pages 195-200.
    9. Mohammadi, Iman & Ajam, Hossein, 2019. "A theoretical study of entropy generation of the combustion phenomenon in the porous medium burner," Energy, Elsevier, vol. 188(C).
    10. Pahlevaninezhad, Masoud & Davazdah Emami, Mohsen & Panjepour, Masoud, 2014. "The effects of kinetic parameters on combustion characteristics in a sintering bed," Energy, Elsevier, vol. 73(C), pages 160-176.
    11. Kaluri, Ram Satish & Basak, Tanmay, 2011. "Entropy generation due to natural convection in discretely heated porous square cavities," Energy, Elsevier, vol. 36(8), pages 5065-5080.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dettù, Federico & Pozzato, Gabriele & Rizzo, Denise M. & Onori, Simona, 2021. "Exergy-based modeling framework for hybrid and electric ground vehicles," Applied Energy, Elsevier, vol. 300(C).
    2. Fiore, M. & Magi, V. & Viggiano, A., 2020. "Internal combustion engines powered by syngas: A review," Applied Energy, Elsevier, vol. 276(C).
    3. Sahoo, Bibhuti B. & Saha, Ujjwal K. & Sahoo, Niranjan, 2011. "Theoretical performance limits of a syngas–diesel fueled compression ignition engine from second law analysis," Energy, Elsevier, vol. 36(2), pages 760-769.
    4. Mauro Villarini & Vera Marcantonio & Andrea Colantoni & Enrico Bocci, 2019. "Sensitivity Analysis of Different Parameters on the Performance of a CHP Internal Combustion Engine System Fed by a Biomass Waste Gasifier," Energies, MDPI, vol. 12(4), pages 1-21, February.
    5. Skorek-Osikowska, Anna & Bartela, Łukasz & Kotowicz, Janusz & Sobolewski, Aleksander & Iluk, Tomasz & Remiorz, Leszek, 2014. "The influence of the size of the CHP (combined heat and power) system integrated with a biomass fueled gas generator and piston engine on the thermodynamic and economic effectiveness of electricity an," Energy, Elsevier, vol. 67(C), pages 328-340.
    6. Zhu, Sipeng & Deng, Kangyao & Qu, Shuan, 2013. "Energy and exergy analyses of a bottoming Rankine cycle for engine exhaust heat recovery," Energy, Elsevier, vol. 58(C), pages 448-457.
    7. Rakopoulos, Dimitrios C. & Rakopoulos, Constantine D. & Kosmadakis, George M. & Mavropoulos, George C., 2024. "Assessing the cyclic variability of combustion and NO emissions in hydrogen-methane fueled HSSI engine via quasi-dimensional modeling under the influence of flame-kernel turbulence and equivalence rat," Energy, Elsevier, vol. 288(C).
    8. Rakopoulos, Constantine D. & Rakopoulos, Dimitrios C. & Mavropoulos, George C. & Kosmadakis, George M., 2018. "Investigating the EGR rate and temperature impact on diesel engine combustion and emissions under various injection timings and loads by comprehensive two-zone modeling," Energy, Elsevier, vol. 157(C), pages 990-1014.
    9. Martínez, Juan Daniel & Mahkamov, Khamid & Andrade, Rubenildo V. & Silva Lora, Electo E., 2012. "Syngas production in downdraft biomass gasifiers and its application using internal combustion engines," Renewable Energy, Elsevier, vol. 38(1), pages 1-9.
    10. Rakopoulos, Constantine D. & Rakopoulos, Dimitrios C. & Kyritsis, Dimitrios C. & Andritsakis, Eleftherios C. & Mavropoulos, George C., 2022. "Exergy evaluation of equivalence ratio, compression ratio and residual gas effects in variable compression ratio spark-ignition engine using quasi-dimensional combustion modeling," Energy, Elsevier, vol. 244(PB).
    11. Amjad, A.K. & Khoshbakhi Saray, R. & Mahmoudi, S.M.S. & Rahimi, A., 2011. "Availability analysis of n-heptane and natural gas blends combustion in HCCI engines," Energy, Elsevier, vol. 36(12), pages 6900-6909.
    12. Najjar, Yousef S.H., 2011. "Comparison of performance of a Greener direct-injection stratified-charge (DISC) engine with a spark-ignition engine using a simplified model," Energy, Elsevier, vol. 36(7), pages 4136-4143.
    13. Feng, Hongqing & Liu, Daojian & Yang, Xiaoxi & An, Ming & Zhang, Weiwen & Zhang, Xiaodong, 2016. "Availability analysis of using iso-octane/n-butanol blends in spark-ignition engines," Renewable Energy, Elsevier, vol. 96(PA), pages 281-294.
    14. Chintala, Venkateswarlu & Subramanian, K.A., 2014. "Assessment of maximum available work of a hydrogen fueled compression ignition engine using exergy analysis," Energy, Elsevier, vol. 67(C), pages 162-175.
    15. Rakopoulos, Dimitrios C. & Rakopoulos, Constantine D. & Kosmadakis, George M. & Giakoumis, Evangelos G., 2020. "Exergy assessment of combustion and EGR and load effects in DI diesel engine using comprehensive two-zone modeling," Energy, Elsevier, vol. 202(C).
    16. Hagos, Ftwi Yohaness & A. Aziz, A. Rashid & Sulaiman, Shaharin A., 2015. "Methane enrichment of syngas (H2/CO) in a spark-ignition direct-injection engine: Combustion, performance and emissions comparison with syngas and Compressed Natural Gas," Energy, Elsevier, vol. 90(P2), pages 2006-2015.
    17. Hongqing, Feng & Huijie, Li, 2010. "Second-law analyses applied to a spark ignition engine under surrogate fuels for gasoline," Energy, Elsevier, vol. 35(9), pages 3551-3556.
    18. Kan, Xiang & Zhou, Dezhi & Yang, Wenming & Zhai, Xiaoqiang & Wang, Chi-Hwa, 2018. "An investigation on utilization of biogas and syngas produced from biomass waste in premixed spark ignition engine," Applied Energy, Elsevier, vol. 212(C), pages 210-222.
    19. Roussos G. Papagiannakis & Dimitrios C. Rakopoulos & Constantine D. Rakopoulos, 2018. "Evaluation of the Air Oxygen Enrichment Effects on Combustion and Emissions of Natural Gas/Diesel Dual-Fuel Engines at Various Loads and Pilot Fuel Quantities," Energies, MDPI, vol. 11(11), pages 1-25, November.
    20. Rakopoulos, Dimitrios C. & Rakopoulos, Constantine D. & Kyritsis, Dimitrios C., 2016. "Butanol or DEE blends with either straight vegetable oil or biodiesel excluding fossil fuel: Comparative effects on diesel engine combustion attributes, cyclic variability and regulated emissions trad," Energy, Elsevier, vol. 115(P1), pages 314-325.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:8:p:3483-3500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.