IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i7p2965-2971.html
   My bibliography  Save this article

Economic analysis of the profitability of energy-saving architectural measures for the achievement of the EPB-standard

Author

Listed:
  • Audenaert, A.
  • De Boeck, L.
  • Roelants, K.

Abstract

Energy efficiency in buildings has become a key goal of any energy policy. Europe relies on the Energy Performance of Buildings Directive (EPBD), which has been converted by Flanders into the ‘Energy Performance and Interior Climate’ (EPB). Taking into account this Flemish EPB-standard (in terms of maximum U-values, E-level and K-value), this study seeks the economically most profitable combination of insulation – facade, roof, floor and glazing – for the Flemish citizen. For this purpose, a scenario-analysis is conducted using the EPB-software Flanders and a self-designed Excel file. Based on some important profitability criteria, the most profitable combination is determined for three representative types of dwellings studied. The scenario-analysis generates some well-founded guidelines for the Flemish citizen when building a house. It shows that in order to ensure the maximum profitability from investment in insulation, the key factor for the semi-detached dwelling is the insulation of roof and floor, whereas for a detached dwelling the key factor is the insulation of facade and floor. As a subsidiary consideration, the study also indicates that the U-values resulting from the more stringent E-level are still not sufficiently stringent because the U-values obtained for the most profitable combination are far below their maximum value. The same consideration applies in the case of the K-value.

Suggested Citation

  • Audenaert, A. & De Boeck, L. & Roelants, K., 2010. "Economic analysis of the profitability of energy-saving architectural measures for the achievement of the EPB-standard," Energy, Elsevier, vol. 35(7), pages 2965-2971.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:7:p:2965-2971
    DOI: 10.1016/j.energy.2010.03.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210001507
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.03.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dorian, James P. & Franssen, Herman T. & Simbeck, Dale R., 2006. "Global challenges in energy," Energy Policy, Elsevier, vol. 34(15), pages 1984-1991, October.
    2. Panayi, Panayiotis, 2004. "Prioritising energy investments in new dwellings constructed in Cyprus," Renewable Energy, Elsevier, vol. 29(5), pages 789-819.
    3. Singh, M.C. & Garg, S.N., 2009. "Energy rating of different glazings for Indian climates," Energy, Elsevier, vol. 34(11), pages 1986-1992.
    4. Lam, Joseph C. & Tsang, C.L. & Li, Danny H.W. & Cheung, S.O., 2005. "Residential building envelope heat gain and cooling energy requirements," Energy, Elsevier, vol. 30(7), pages 933-951.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beliën, Jeroen & De Boeck, Liesje & Colpaert, Jan & Cooman, Gert, 2013. "The best time to invest in photovoltaic panels in Flanders," Renewable Energy, Elsevier, vol. 50(C), pages 348-358.
    2. Annunziata, Eleonora & Frey, Marco & Rizzi, Francesco, 2013. "Towards nearly zero-energy buildings: The state-of-art of national regulations in Europe," Energy, Elsevier, vol. 57(C), pages 125-133.
    3. Audenaert, A. & De Boeck, L. & Geudens, K. & Buyle, M., 2012. "Cost and E-level analysis of different dwelling types and different heating systems with or without heat exchanger," Energy, Elsevier, vol. 44(1), pages 604-610.
    4. Alessia Mangialardo & Ezio Micelli & Federica Saccani, 2018. "Does Sustainability Affect Real Estate Market Values? Empirical Evidence from the Office Buildings Market in Milan (Italy)," Sustainability, MDPI, vol. 11(1), pages 1-14, December.
    5. Audenaert, Amaryllis & De Boeck, Liesje & Geudens, K. & Buyle, M., 2011. "Cost and E-level analysis of different dwelling types and different heating systems with or without heat exchanger," Working Papers 2011/33, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
    6. De Boeck, L. & Verbeke, S. & Audenaert, A. & De Mesmaeker, L., 2015. "Improving the energy performance of residential buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 960-975.
    7. Audenaert, A. & Briffaerts, K. & Engels, L., 2011. "Practical versus theoretical domestic energy consumption for space heating," Energy Policy, Elsevier, vol. 39(9), pages 5219-5227, September.
    8. Oliveira Panão, Marta J.N. & Camelo, Susana M.L. & Gonçalves, Helder J.P., 2011. "Assessment of the Portuguese building thermal code: Newly revised requirements for cooling energy needs used to prevent the overheating of buildings in the summer," Energy, Elsevier, vol. 36(5), pages 3262-3271.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sadineni, Suresh B. & Madala, Srikanth & Boehm, Robert F., 2011. "Passive building energy savings: A review of building envelope components," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3617-3631.
    2. Luo, Yongqiang & Zhang, Ling & Wu, Jing & Wang, Xiliang & Liu, Zhongbing & Wu, Zhenghong, 2017. "Modeling of solar transmission through multilayer glazing facade using shading blinds with arbitrary geometrical and surface optical properties," Energy, Elsevier, vol. 128(C), pages 163-182.
    3. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
    4. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    5. Lloyd, Bob & Subbarao, Srikanth, 2009. "Development challenges under the Clean Development Mechanism (CDM)--Can renewable energy initiatives be put in place before peak oil?," Energy Policy, Elsevier, vol. 37(1), pages 237-245, January.
    6. Baharoon, Dhyia Aidroos & Rahman, Hasimah Abdul & Fadhl, Saeed Obaid, 2016. "Publics׳ knowledge, attitudes and behavioral toward the use of solar energy in Yemen power sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 498-515.
    7. Rath, Badri Narayan & Akram, Vaseem & Bal, Debi Prasad & Mahalik, Mantu Kumar, 2019. "Do fossil fuel and renewable energy consumption affect total factor productivity growth? Evidence from cross-country data with policy insights," Energy Policy, Elsevier, vol. 127(C), pages 186-199.
    8. Wang, Guoqiang & Wang, Feng & Li, Longjian & Zhang, Guofu, 2013. "Experiment of catalyst activity distribution effect on methanol steam reforming performance in the packed bed plate-type reactor," Energy, Elsevier, vol. 51(C), pages 267-272.
    9. De Boeck, L. & Verbeke, S. & Audenaert, A. & De Mesmaeker, L., 2015. "Improving the energy performance of residential buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 960-975.
    10. Sheng, Weili & Zhang, Lin & Ridley, Ian, 2020. "The impact of minimum OTTV legislation on building energy consumption," Energy Policy, Elsevier, vol. 136(C).
    11. Seo, Dong-yeon & Koo, Choongwan & Hong, Taehoon, 2015. "A Lagrangian finite element model for estimating the heating and cooling demand of a residential building with a different envelope design," Applied Energy, Elsevier, vol. 142(C), pages 66-79.
    12. Rawan Hakawati & Beatrice Smyth & Helen Daly & Geoffrey McCullough & David Rooney, 2019. "Is the Fischer-Tropsch Conversion of Biogas-Derived Syngas to Liquid Fuels Feasible at Atmospheric Pressure?," Energies, MDPI, vol. 12(6), pages 1-28, March.
    13. Yu, Jinghua & Yang, Changzhi & Tian, Liwei & Liao, Dan, 2009. "Evaluation on energy and thermal performance for residential envelopes in hot summer and cold winter zone of China," Applied Energy, Elsevier, vol. 86(10), pages 1970-1985, October.
    14. Pätäri, Satu & Kyläheiko, Kalevi & Sandström, Jaana, 2011. "Opening up new strategic options in the pulp and paper industry: Case biorefineries," Forest Policy and Economics, Elsevier, vol. 13(6), pages 456-464, July.
    15. Rozina, & Asif, Saira & Ahmad, Mushtaq & Zafar, Muhammad & Ali, Nsir, 2017. "Prospects and potential of fatty acid methyl esters of some non-edible seed oils for use as biodiesel in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 687-702.
    16. Ihara, Takeshi & Gustavsen, Arild & Jelle, Bjørn Petter, 2015. "Effect of facade components on energy efficiency in office buildings," Applied Energy, Elsevier, vol. 158(C), pages 422-432.
    17. Jeongyoon Oh & Taehoon Hong & Hakpyeong Kim & Jongbaek An & Kwangbok Jeong & Choongwan Koo, 2017. "Advanced Strategies for Net-Zero Energy Building: Focused on the Early Phase and Usage Phase of a Building’s Life Cycle," Sustainability, MDPI, vol. 9(12), pages 1-52, December.
    18. Pereira, Júlia & Rivero, Cristina Camacho & Gomes, M. Glória & Rodrigues, A. Moret & Marrero, Madelyn, 2021. "Energy, environmental and economic analysis of windows’ retrofit with solar control films: A case study in Mediterranean climate," Energy, Elsevier, vol. 233(C).
    19. Avri Eitan & Gillad Rosen & Lior Herman & Itay Fishhendler, 2020. "Renewable Energy Entrepreneurs: A Conceptual Framework," Energies, MDPI, vol. 13(10), pages 1-23, May.
    20. Singh, M.C. & Garg, S.N., 2009. "Energy rating of different glazings for Indian climates," Energy, Elsevier, vol. 34(11), pages 1986-1992.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:7:p:2965-2971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.