IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i12p4941-4948.html
   My bibliography  Save this article

Performance of a gas engine heat pump (GEHP) using R410A for heating and cooling applications

Author

Listed:
  • Elgendy, E.
  • Schmidt, J.
  • Khalil, A.
  • Fatouh, M.

Abstract

A gas engine heat pump (GEHP) represents one of the most practicable systems which improve the overall energy utilization efficiency and reduce the operating cost for heating and cooling applications. The present work aimed at evaluating the performance of a GEHP for air-conditioning and hot water supply. In order to achieve this objective, a test facility was developed and experiments were performed over a wide range of engine speed (1200rpm–1750rpm), ambient air temperature (24.1°C–34.8°C), evaporator water flow rate (1.99m3/h–3.6m3/h) and evaporator water inlet temperature (12.2°C–23°C). Performance characteristics of the GEHP were characterized by water outlet temperatures, cooling capacity, heating capacity and primary energy ratio (PER). The results showed that the effect of evaporator water inlet temperature on the system performance is more significant than the effects of ambient air temperature and evaporator water flow rate. PER of the considered system at evaporator water inlet temperature of 23°C is higher than that one at evaporator water inlet temperature of 12.2°C by about 22%. PER of the system decreases by 16% when engine speed changes from 1200rpm to 1750rpm.

Suggested Citation

  • Elgendy, E. & Schmidt, J. & Khalil, A. & Fatouh, M., 2010. "Performance of a gas engine heat pump (GEHP) using R410A for heating and cooling applications," Energy, Elsevier, vol. 35(12), pages 4941-4948.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:12:p:4941-4948
    DOI: 10.1016/j.energy.2010.08.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210004676
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.08.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maidment, G. G. & Zhao, X. & Riffat, S. B., 2001. "Combined cooling and heating using a gas engine in a supermarket," Applied Energy, Elsevier, vol. 68(4), pages 321-335, April.
    2. Liu, Lanbin & Fu, Lin & Jiang, Yi, 2010. "Application of an exhaust heat recovery system for domestic hot water," Energy, Elsevier, vol. 35(3), pages 1476-1481.
    3. Elgendy, E. & Schmidt, J., 2010. "Experimental study of gas engine driven air to water heat pump in cooling mode," Energy, Elsevier, vol. 35(6), pages 2461-2467.
    4. Zhao, Yang & Shigang, Zhang & Haibe, Zhao, 2003. "Optimization study of combined refrigeration cycles driven by an engine," Applied Energy, Elsevier, vol. 76(4), pages 379-389, December.
    5. Al-Bassam, E. & Maheshwari, G.P. & Al-Hadban, Y. & Rasquinha, J., 1997. "Energy-efficient production of chilled water in industry," Energy, Elsevier, vol. 22(12), pages 1183-1188.
    6. Sanaye, Sepehr & Chahartaghi, Mahmood, 2010. "Thermal modeling and operating tests for the gas engine-driven heat pump systems," Energy, Elsevier, vol. 35(1), pages 351-363.
    7. Sun, Z.G., 2008. "Experimental investigation of integrated refrigeration system (IRS) with gas engine, compression chiller and absorption chiller," Energy, Elsevier, vol. 33(3), pages 431-436.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elgendy, E. & Schmidt, J. & Khalil, A. & Fatouh, M., 2011. "Modelling and validation of a gas engine heat pump working with R410A for cooling applications," Applied Energy, Elsevier, vol. 88(12), pages 4980-4988.
    2. Amiri Rad, Ehsan & Maddah, Saeed & Mohammadi, Saeed, 2020. "Designing and optimizing a novel cogeneration system for an office building based on thermo-economic and environmental analyses," Renewable Energy, Elsevier, vol. 151(C), pages 342-354.
    3. Yang, Zhao & Wu, Xi, 2013. "Retrofits and options for the alternatives to HCFC-22," Energy, Elsevier, vol. 59(C), pages 1-21.
    4. Mostafavi, Seyed Alireza & Khalili, Mohammad & Hajjarian, Ramtin & Moghadamrad, Hossein, 2024. "Analysis of the technical and economic aspects of gas engine heat pumps in various climates in Iran," Energy, Elsevier, vol. 302(C).
    5. Elgendy, E. & Schmidt, J. & Khalil, A. & Fatouh, M., 2011. "Performance of a gas engine driven heat pump for hot water supply systems," Energy, Elsevier, vol. 36(5), pages 2883-2889.
    6. Fatouh, M. & Elgendy, E., 2011. "Experimental investigation of a vapor compression heat pump used for cooling and heating applications," Energy, Elsevier, vol. 36(5), pages 2788-2795.
    7. Bartosz Pawela & Marek Jaszczur, 2022. "Review of Gas Engine Heat Pumps," Energies, MDPI, vol. 15(13), pages 1-16, July.
    8. Sanaye, Sepehr & Chahartaghi, Mahmood & Asgari, Hesam, 2013. "Dynamic modeling of Gas Engine driven Heat Pump system in cooling mode," Energy, Elsevier, vol. 55(C), pages 195-208.
    9. Gungor, Aysegul & Erbay, Zafer & Hepbasli, Arif, 2011. "Exergoeconomic analyses of a gas engine driven heat pump drier and food drying process," Applied Energy, Elsevier, vol. 88(8), pages 2677-2684, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bartosz Pawela & Marek Jaszczur, 2022. "Review of Gas Engine Heat Pumps," Energies, MDPI, vol. 15(13), pages 1-16, July.
    2. Elgendy, E. & Schmidt, J. & Khalil, A. & Fatouh, M., 2011. "Modelling and validation of a gas engine heat pump working with R410A for cooling applications," Applied Energy, Elsevier, vol. 88(12), pages 4980-4988.
    3. Elgendy, E. & Schmidt, J. & Khalil, A. & Fatouh, M., 2011. "Performance of a gas engine driven heat pump for hot water supply systems," Energy, Elsevier, vol. 36(5), pages 2883-2889.
    4. Gungor, Aysegul & Erbay, Zafer & Hepbasli, Arif, 2011. "Exergetic analysis and evaluation of a new application of gas engine heat pumps (GEHPs) for food drying processes," Applied Energy, Elsevier, vol. 88(3), pages 882-891, March.
    5. Sanaye, Sepehr & Chahartaghi, Mahmood & Asgari, Hesam, 2013. "Dynamic modeling of Gas Engine driven Heat Pump system in cooling mode," Energy, Elsevier, vol. 55(C), pages 195-208.
    6. Amiri Rad, Ehsan & Maddah, Saeed & Mohammadi, Saeed, 2020. "Designing and optimizing a novel cogeneration system for an office building based on thermo-economic and environmental analyses," Renewable Energy, Elsevier, vol. 151(C), pages 342-354.
    7. Fatouh, M. & Elgendy, E., 2011. "Experimental investigation of a vapor compression heat pump used for cooling and heating applications," Energy, Elsevier, vol. 36(5), pages 2788-2795.
    8. Manzela, André Aleixo & Hanriot, Sérgio Morais & Cabezas-Gómez, Luben & Sodré, José Ricardo, 2010. "Using engine exhaust gas as energy source for an absorption refrigeration system," Applied Energy, Elsevier, vol. 87(4), pages 1141-1148, April.
    9. Wang, Jieyue & Cai, Liang & Wang, Yanwei & Ma, Yanbin & Zhang, Xiaosong, 2013. "Modeling and optimization matching on drive system of a coaxial parallel-type hybrid-power gas engine heat pump," Energy, Elsevier, vol. 55(C), pages 1196-1204.
    10. Muhsin Kılıç, 2022. "Evaluation of Combined Thermal–Mechanical Compression Systems: A Review for Energy Efficient Sustainable Cooling," Sustainability, MDPI, vol. 14(21), pages 1-38, October.
    11. Sabina Kordana-Obuch & Michał Wojtoń & Mariusz Starzec & Beata Piotrowska, 2023. "Opportunities and Challenges for Research on Heat Recovery from Wastewater: Bibliometric and Strategic Analyses," Energies, MDPI, vol. 16(17), pages 1-36, September.
    12. Ramadan, Mohamad & Murr, Rabih & Khaled, Mahmoud & Olabi, Abdul Ghani, 2018. "Mixed numerical - Experimental approach to enhance the heat pump performance by drain water heat recovery," Energy, Elsevier, vol. 149(C), pages 1010-1021.
    13. Janghorban Esfahani, Iman & Kang, Yong Tae & Yoo, ChangKyoo, 2014. "A high efficient combined multi-effect evaporation–absorption heat pump and vapor-compression refrigeration part 1: Energy and economic modeling and analysis," Energy, Elsevier, vol. 75(C), pages 312-326.
    14. Qingkun Meng & Liang Cai & Wenxiu Ji & Jie Yan & Tao Zhang & Xiaosong Zhang, 2015. "Energy Management of a Hybrid-Power Gas Engine-Driven Heat Pump," Energies, MDPI, vol. 8(10), pages 1-22, October.
    15. Zhang, Chuan & Zhou, Li & Chhabra, Pulkit & Garud, Sushant S. & Aditya, Kevin & Romagnoli, Alessandro & Comodi, Gabriele & Dal Magro, Fabio & Meneghetti, Antonella & Kraft, Markus, 2016. "A novel methodology for the design of waste heat recovery network in eco-industrial park using techno-economic analysis and multi-objective optimization," Applied Energy, Elsevier, vol. 184(C), pages 88-102.
    16. Liu, F. & Tait, S. & Schellart, A. & Mayfield, M. & Boxall, J., 2020. "Reducing carbon emissions by integrating urban water systems and renewable energy sources at a community scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    17. Abdur Rehman Mazhar & Shuli Liu & Ashish Shukla, 2018. "A Key Review of Non-Industrial Greywater Heat Harnessing," Energies, MDPI, vol. 11(2), pages 1-34, February.
    18. Jia, Teng & Dou, Pengbo & Chu, Peng & Dai, Yanjun, 2020. "Proposal and performance analysis of a novel solar-assisted resorption-subcooled compression hybrid heat pump system for space heating in cold climate condition," Renewable Energy, Elsevier, vol. 150(C), pages 1136-1150.
    19. Gazda, Wiesław & Kozioł, Joachim, 2013. "The estimation of energy efficiency for hybrid refrigeration system," Applied Energy, Elsevier, vol. 101(C), pages 49-57.
    20. Sun, Z.G., 2008. "Experimental investigation of integrated refrigeration system (IRS) with gas engine, compression chiller and absorption chiller," Energy, Elsevier, vol. 33(3), pages 431-436.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:12:p:4941-4948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.