IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v302y2024ics0360544224016426.html
   My bibliography  Save this article

Analysis of the technical and economic aspects of gas engine heat pumps in various climates in Iran

Author

Listed:
  • Mostafavi, Seyed Alireza
  • Khalili, Mohammad
  • Hajjarian, Ramtin
  • Moghadamrad, Hossein

Abstract

Due to the scarcity of fossil fuels and the potential for energy shortages, the use of energy-efficient devices is of utmost importance. There is an increasing trend in the utilization of heat pumps in air conditioning systems (heating/cooling) for both residential and commercial buildings. This article focuses on the analysis of the technical and economic aspects of gas engine heat pumps (GEHP) in various climates throughout Iran. The evaluation of this article revolves around two perspectives: that of the consumers and the government. The implementation of GEHP has been carefully considered from the consumers' perspective to ensure it does not have any negative effects on them. Additionally, from the government's point of view, the available resources are considered, and the supply of electricity and gas, along with their cost and energy consumption, are thoroughly investigated by the Ministries of Energy and Petroleum. The findings indicate that, from the consumers' perspective, the economic efficiency of GEHP can be up to 11 times higher than that of electric heat pumps (EHP). Moreover, from the government's viewpoint, GEHP leads to a reduction of over 92 % in electricity consumption, 5 % in gas consumption, and 92 % in annual expenses for the Ministry of Energy. Furthermore, the implementation of GEHP increases the income of the Ministry of Petroleum by 9.8 times.

Suggested Citation

  • Mostafavi, Seyed Alireza & Khalili, Mohammad & Hajjarian, Ramtin & Moghadamrad, Hossein, 2024. "Analysis of the technical and economic aspects of gas engine heat pumps in various climates in Iran," Energy, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224016426
    DOI: 10.1016/j.energy.2024.131869
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224016426
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131869?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hepbasli, Arif & Ozgener, Leyla, 2004. "Development of geothermal energy utilization in Turkey: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(5), pages 433-460, October.
    2. Elgendy, E. & Schmidt, J. & Khalil, A. & Fatouh, M., 2010. "Performance of a gas engine heat pump (GEHP) using R410A for heating and cooling applications," Energy, Elsevier, vol. 35(12), pages 4941-4948.
    3. Yang Zhao & Zhao Haibo & Wu Zhiguang, 2003. "Technical and economic analysis of gas-engine driven heat pump in China," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 20(3), pages 223-232.
    4. Yang, Zhao & Cheng, Heng & Wu, Xi & Chen, Yiguang, 2011. "Research on improving energy efficiency and the annual distributing structure in electricity and gas consumption by extending use of GEHP," Energy Policy, Elsevier, vol. 39(9), pages 5192-5202, September.
    5. Hepbasli, Arif & Erbay, Zafer & Icier, Filiz & Colak, Neslihan & Hancioglu, Ebru, 2009. "A review of gas engine driven heat pumps (GEHPs) for residential and industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 85-99, January.
    6. Xu, Zhenjun & Wu, Huaizhi & Wu, Meiling, 2010. "Energy performance and consumption for biogas heat pump air conditioner," Energy, Elsevier, vol. 35(12), pages 5497-5502.
    7. Sanaye, Sepehr & Chahartaghi, Mahmood & Asgari, Hesam, 2013. "Dynamic modeling of Gas Engine driven Heat Pump system in cooling mode," Energy, Elsevier, vol. 55(C), pages 195-208.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bartosz Pawela & Marek Jaszczur, 2022. "Review of Gas Engine Heat Pumps," Energies, MDPI, vol. 15(13), pages 1-16, July.
    2. Gungor, Aysegul & Erbay, Zafer & Hepbasli, Arif, 2011. "Exergoeconomic analyses of a gas engine driven heat pump drier and food drying process," Applied Energy, Elsevier, vol. 88(8), pages 2677-2684, August.
    3. Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
    4. Hepbasli, Arif & Erbay, Zafer & Icier, Filiz & Colak, Neslihan & Hancioglu, Ebru, 2009. "A review of gas engine driven heat pumps (GEHPs) for residential and industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 85-99, January.
    5. Shi, Peng & Wang, Lin-Shu & Schwartz, Paul & Hofbauer, Peter, 2020. "State-wide comparative analysis of the cost saving potential of Vuilleumier heat pumps in residential houses," Applied Energy, Elsevier, vol. 277(C).
    6. Sanaye, Sepehr & Chahartaghi, Mahmood & Asgari, Hesam, 2013. "Dynamic modeling of Gas Engine driven Heat Pump system in cooling mode," Energy, Elsevier, vol. 55(C), pages 195-208.
    7. Carlo Roselli & Elisa Marrasso & Maurizio Sasso, 2021. "Gas Engine-Driven Heat Pumps for Small-Scale Applications: State-of-the-Art and Future Perspectives," Energies, MDPI, vol. 14(16), pages 1-73, August.
    8. Elgendy, E. & Schmidt, J., 2010. "Experimental study of gas engine driven air to water heat pump in cooling mode," Energy, Elsevier, vol. 35(6), pages 2461-2467.
    9. Li, Min & Lai, Alvin C.K., 2012. "Heat-source solutions to heat conduction in anisotropic media with application to pile and borehole ground heat exchangers," Applied Energy, Elsevier, vol. 96(C), pages 451-458.
    10. Abbas, Tauqeer & Ahmed Bazmi, Aqeel & Waheed Bhutto, Abdul & Zahedi, Gholamreza, 2014. "Greener energy: Issues and challenges for Pakistan-geothermal energy prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 258-269.
    11. Yang, Zhao & Wu, Xi, 2013. "Retrofits and options for the alternatives to HCFC-22," Energy, Elsevier, vol. 59(C), pages 1-21.
    12. Lee, Woo-Nam & Kim, Hyeong-Jung & Park, Jong-Bae & Cho, Ki-Seon & Roh, Jae Hyung & Son, Sung-Yong, 2012. "Economic analysis of heating and cooling systems from the various perspectives: Application to EHP and GHP in Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4116-4125.
    13. Etemoglu, A.B. & Can, M., 2007. "Classification of geothermal resources in Turkey by exergy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1596-1606, September.
    14. Sheykhi, Mohammad & Chahartaghi, Mahmood & Safaei Pirooz, Amir Ali & Flay, Richard G.J., 2020. "Investigation of the effects of operating parameters of an internal combustion engine on the performance and fuel consumption of a CCHP system," Energy, Elsevier, vol. 211(C).
    15. Ozgener, Leyla, 2011. "A review on the experimental and analytical analysis of earth to air heat exchanger (EAHE) systems in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4483-4490.
    16. Fatma Canka Kilic, 2016. "Geothermal Energy in Turkey," Energy & Environment, , vol. 27(3-4), pages 360-376, May.
    17. Kömürcü, Murat İhsan & Akpınar, Adem, 2009. "Importance of geothermal energy and its environmental effects in Turkey," Renewable Energy, Elsevier, vol. 34(6), pages 1611-1615.
    18. Singh, A.K. & Singh, R.G. & Tiwari, G.N., 2020. "Thermal and electrical performance evaluation of photo-voltaic thermal compound parabolic concentrator integrated fixed dome biogas plant," Renewable Energy, Elsevier, vol. 154(C), pages 614-624.
    19. Noor Muhammad Abd Rahman & Lim Chin Haw & Ahmad Fazlizan, 2021. "A Literature Review of Naturally Ventilated Public Hospital Wards in Tropical Climate Countries for Thermal Comfort and Energy Saving Improvements," Energies, MDPI, vol. 14(2), pages 1-22, January.
    20. Ibrahim, Oussama & Fardoun, Farouk & Younes, Rafic & Louahlia-Gualous, Hasna, 2014. "Air source heat pump water heater: Dynamic modeling, optimal energy management and mini-tubes condensers," Energy, Elsevier, vol. 64(C), pages 1102-1116.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224016426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.