IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i12p4726-4730.html
   My bibliography  Save this article

Assessment of a modified method for determining the cooling load of residential buildings

Author

Listed:
  • Fouda, A.
  • Melikyan, Z.

Abstract

Cooling load calculations are essential in sizing air conditioning system equipment. In designing energy, efficient and renewable energy sourced cooling systems for buildings, it is important to have the exact values of cooling loads and seasonal cooling demands of buildings. In this paper new assessment method for more precise determining of cooling loads and seasonal cooling demands of residential buildings are developed, which are necessary for right solutions of cooling efficiency problems. Comparing to the method of ASHRAE, example and other methods it provides more correct results. Application of suggested method provides better accuracy in assessment of cooling loads especially for seasonal aspects, as they take into account the impact of more factors.

Suggested Citation

  • Fouda, A. & Melikyan, Z., 2010. "Assessment of a modified method for determining the cooling load of residential buildings," Energy, Elsevier, vol. 35(12), pages 4726-4730.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:12:p:4726-4730
    DOI: 10.1016/j.energy.2010.09.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210005013
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.09.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lam, Joseph C. & Tsang, C.L. & Li, Danny H.W. & Cheung, S.O., 2005. "Residential building envelope heat gain and cooling energy requirements," Energy, Elsevier, vol. 30(7), pages 933-951.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghiaus, Christian, 2013. "Causality issue in the heat balance method for calculating the design heating and cooling load," Energy, Elsevier, vol. 50(C), pages 292-301.
    2. Zhuang, Chaoqun & Wang, Shengwei & Shan, Kui, 2019. "Adaptive full-range decoupled ventilation strategy and air-conditioning systems for cleanrooms and buildings requiring strict humidity control and their performance evaluation," Energy, Elsevier, vol. 168(C), pages 883-896.
    3. Gomes, A. & Antunes, C. Henggeler & Martinho, J., 2013. "A physically-based model for simulating inverter type air conditioners/heat pumps," Energy, Elsevier, vol. 50(C), pages 110-119.
    4. Oliveira Panão, Marta J.N. & Camelo, Susana M.L. & Gonçalves, Helder J.P., 2011. "Assessment of the Portuguese building thermal code: Newly revised requirements for cooling energy needs used to prevent the overheating of buildings in the summer," Energy, Elsevier, vol. 36(5), pages 3262-3271.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sheng, Weili & Zhang, Lin & Ridley, Ian, 2020. "The impact of minimum OTTV legislation on building energy consumption," Energy Policy, Elsevier, vol. 136(C).
    2. Sadineni, Suresh B. & Madala, Srikanth & Boehm, Robert F., 2011. "Passive building energy savings: A review of building envelope components," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3617-3631.
    3. Seo, Dong-yeon & Koo, Choongwan & Hong, Taehoon, 2015. "A Lagrangian finite element model for estimating the heating and cooling demand of a residential building with a different envelope design," Applied Energy, Elsevier, vol. 142(C), pages 66-79.
    4. Yu, Jinghua & Yang, Changzhi & Tian, Liwei & Liao, Dan, 2009. "Evaluation on energy and thermal performance for residential envelopes in hot summer and cold winter zone of China," Applied Energy, Elsevier, vol. 86(10), pages 1970-1985, October.
    5. Jeongyoon Oh & Taehoon Hong & Hakpyeong Kim & Jongbaek An & Kwangbok Jeong & Choongwan Koo, 2017. "Advanced Strategies for Net-Zero Energy Building: Focused on the Early Phase and Usage Phase of a Building’s Life Cycle," Sustainability, MDPI, vol. 9(12), pages 1-52, December.
    6. Singh, M.C. & Garg, S.N., 2009. "Energy rating of different glazings for Indian climates," Energy, Elsevier, vol. 34(11), pages 1986-1992.
    7. Ma, Zhenjun & Wang, Shengwei, 2009. "Building energy research in Hong Kong: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1870-1883, October.
    8. Du, Ruiqing & Liu, Chun-Ho & Li, Xian-Xiang & Lin, Chuan-Yao, 2023. "Effect of local climate zone (LCZ) and building category (BC) classification on the simulation of urban climate and air-conditioning load in Hong Kong," Energy, Elsevier, vol. 271(C).
    9. Chung, Mo & Park, Hwa-Choon, 2015. "Comparison of building energy demand for hotels, hospitals, and offices in Korea," Energy, Elsevier, vol. 92(P3), pages 383-393.
    10. Hong, Taehoon & Koo, Choongwan & Kim, Daeho & Lee, Minhyun & Kim, Jimin, 2015. "An estimation methodology for the dynamic operational rating of a new residential building using the advanced case-based reasoning and stochastic approaches," Applied Energy, Elsevier, vol. 150(C), pages 308-322.
    11. Luo, Yongqiang & Zhang, Ling & Wu, Jing & Wang, Xiliang & Liu, Zhongbing & Wu, Zhenghong, 2017. "Modeling of solar transmission through multilayer glazing facade using shading blinds with arbitrary geometrical and surface optical properties," Energy, Elsevier, vol. 128(C), pages 163-182.
    12. Koo, Choongwan & Park, Sungki & Hong, Taehoon & Park, Hyo Seon, 2014. "An estimation model for the heating and cooling demand of a residential building with a different envelope design using the finite element method," Applied Energy, Elsevier, vol. 115(C), pages 205-215.
    13. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
    14. Sadineni, Suresh B. & Atallah, Fady & Boehm, Robert F., 2012. "Impact of roof integrated PV orientation on the residential electricity peak demand," Applied Energy, Elsevier, vol. 92(C), pages 204-210.
    15. Hu, Maomao & Xiao, Fu & Wang, Lingshi, 2017. "Investigation of demand response potentials of residential air conditioners in smart grids using grey-box room thermal model," Applied Energy, Elsevier, vol. 207(C), pages 324-335.
    16. Mao, Ning & Pan, Dongmei & Li, Zhao & Xu, Yingjie & Song, Mengjie & Deng, Shiming, 2017. "A numerical study on influences of building envelope heat gain on operating performances of a bed-based task/ambient air conditioning (TAC) system in energy saving and thermal comfort," Applied Energy, Elsevier, vol. 192(C), pages 213-221.
    17. Sadineni, Suresh B. & France, Todd M. & Boehm, Robert F., 2011. "Economic feasibility of energy efficiency measures in residential buildings," Renewable Energy, Elsevier, vol. 36(11), pages 2925-2931.
    18. Halawa, Edward & Ghaffarianhoseini, Amirhosein & Ghaffarianhoseini, Ali & Trombley, Jeremy & Hassan, Norhaslina & Baig, Mirza & Yusoff, Safiah Yusmah & Azzam Ismail, Muhammad, 2018. "A review on energy conscious designs of building façades in hot and humid climates: Lessons for (and from) Kuala Lumpur and Darwin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2147-2161.
    19. Chua, K.J. & Chou, S.K., 2010. "Energy performance of residential buildings in Singapore," Energy, Elsevier, vol. 35(2), pages 667-678.
    20. Hong, Taehoon & Koo, Choongwan & Kim, Hyunjoong & Seon Park, Hyo, 2014. "Decision support model for establishing the optimal energy retrofit strategy for existing multi-family housing complexes," Energy Policy, Elsevier, vol. 66(C), pages 157-169.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:12:p:4726-4730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.