IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v34y2009i10p1523-1529.html
   My bibliography  Save this article

Mean-risk efficient portfolio analysis of demand response and supply resources

Author

Listed:
  • Deng, Shi-Jie
  • Xu, Li

Abstract

In the restructured electric power utility industry, reducing the risk exposure of profit to the highly volatile electricity wholesale price and the fluctuating demand of end users is essential to the financial success of load-serving entities (LSEs). Demand response (DR) programs have been utilized to manage the correlated price and volumetric risks, and simultaneously improve the reliability of the power system. This paper proposes an efficient portfolio framework for LSEs to evaluate the role of DR programs in achieving a desirable tradeoff between profit and risk. The mean-risk efficient frontier formed by the optimal portfolios allows LSEs to identify the least amount of risk to bear corresponding to a given profit target. Numerical examples are provided to illustrate the impact of DR programs on the composition of the optimal portfolios in achieving different levels of tradeoff between risk and reward.

Suggested Citation

  • Deng, Shi-Jie & Xu, Li, 2009. "Mean-risk efficient portfolio analysis of demand response and supply resources," Energy, Elsevier, vol. 34(10), pages 1523-1529.
  • Handle: RePEc:eee:energy:v:34:y:2009:i:10:p:1523-1529
    DOI: 10.1016/j.energy.2009.06.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544209002679
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2009.06.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexander, Gordon J. & Baptista, Alexandre M., 2002. "Economic implications of using a mean-VaR model for portfolio selection: A comparison with mean-variance analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 26(7-8), pages 1159-1193, July.
    2. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    3. Basak, Suleyman & Shapiro, Alexander, 2001. "Value-at-Risk-Based Risk Management: Optimal Policies and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 371-405.
    4. Rajnish Kamat & Shmuel S. Oren, 2002. "Exotic Options for Interruptible Electricity Supply Contracts," Operations Research, INFORMS, vol. 50(5), pages 835-850, October.
    5. Herter, Karen & McAuliffe, Patrick & Rosenfeld, Arthur, 2007. "An exploratory analysis of California residential customer response to critical peak pricing of electricity," Energy, Elsevier, vol. 32(1), pages 25-34.
    6. Severin Borenstein, 2002. "The Trouble With Electricity Markets: Understanding California's Restructuring Disaster," Journal of Economic Perspectives, American Economic Association, vol. 16(1), pages 191-211, Winter.
    7. Woo, Chi-Keung & Karimov, Rouslan I. & Horowitz, Ira, 2004. "Managing electricity procurement cost and risk by a local distribution company," Energy Policy, Elsevier, vol. 32(5), pages 635-645, March.
    8. C-K Woo & I Horowitz & B Horii & R I Karimov, 2004. "The efficient frontier for spot and forward purchases: an application to electricity," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(11), pages 1130-1136, November.
    9. Deng, S.J. & Oren, S.S., 2006. "Electricity derivatives and risk management," Energy, Elsevier, vol. 31(6), pages 940-953.
    10. Ross Baldick & Sergey Kolos & Stathis Tompaidis, 2006. "Interruptible Electricity Contracts from an Electricity Retailer's Point of View: Valuation and Optimal Interruption," Operations Research, INFORMS, vol. 54(4), pages 627-642, August.
    11. Suvrajeet Sen & Lihua Yu & Talat Genc, 2006. "A Stochastic Programming Approach to Power Portfolio Optimization," Operations Research, INFORMS, vol. 54(1), pages 55-72, February.
    12. Zarnikau, J. & Landreth, G. & Hallett, I. & Kumbhakar, S.C., 2007. "Industrial customer response to wholesale prices in the restructured Texas electricity market," Energy, Elsevier, vol. 32(9), pages 1715-1723.
    13. Horowitz, I. & Woo, C.K., 2006. "Designing Pareto-superior demand-response rate options," Energy, Elsevier, vol. 31(6), pages 1040-1051.
    14. Woo, Chi-Keung & Horowitz, Ira & Olson, Arne & Horii, Brian & Baskette, Carmen, 2006. "Efficient frontiers for electricity procurement by an LDC with multiple purchase options," Omega, Elsevier, vol. 34(1), pages 70-80, January.
    15. Spees, Kathleen & Lave, Lester B., 2007. "Demand Response and Electricity Market Efficiency," The Electricity Journal, Elsevier, vol. 20(3), pages 69-85, April.
    16. Paul R. Kleindorfer & Lide Li, 2005. "Multi-Period VaR-Constrained Portfolio Optimization with Applications to the Electric Power Sector," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 1-26.
    17. Sezgen, Osman & Goldman, C.A. & Krishnarao, P., 2007. "Option value of electricity demand response," Energy, Elsevier, vol. 32(2), pages 108-119.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pérez Odeh, Rodrigo & Watts, David & Negrete-Pincetic, Matías, 2018. "Portfolio applications in electricity markets review: Private investor and manager perspective trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 192-204.
    2. DeBenedictis, A. & Hoff, T.E. & Price, S. & Woo, C.K., 2010. "Statistically adjusted engineering (SAE) modeling of metered roof-top photovoltaic (PV) output: California evidence," Energy, Elsevier, vol. 35(10), pages 4178-4183.
    3. Fotouhi Ghazvini, Mohammad Ali & Faria, Pedro & Ramos, Sergio & Morais, Hugo & Vale, Zita, 2015. "Incentive-based demand response programs designed by asset-light retail electricity providers for the day-ahead market," Energy, Elsevier, vol. 82(C), pages 786-799.
    4. Westner, Günther & Madlener, Reinhard, 2011. "Development of cogeneration in Germany: A mean-variance portfolio analysis of individual technology’s prospects in view of the new regulatory framework," Energy, Elsevier, vol. 36(8), pages 5301-5313.
    5. Kim, Jin-Ho & Shcherbakova, Anastasia, 2011. "Common failures of demand response," Energy, Elsevier, vol. 36(2), pages 873-880.
    6. Jaeyong Chae & Sung-Kwan Joo, 2017. "Demand Response Resource Allocation Method Using Mean-Variance Portfolio Theory for Load Aggregators in the Korean Demand Response Market," Energies, MDPI, vol. 10(7), pages 1-14, June.
    7. Hyeon-Gon Park & Jae-Kun Lyu & YongCheol Kang & Jong-Keun Park, 2014. "Unit Commitment Considering Interruptible Load for Power System Operation with Wind Power," Energies, MDPI, vol. 7(7), pages 1-19, July.
    8. Dashti, Reza & Afsharnia, Saeed & Ghaderi, Farid, 2010. "AGA (Asset Governance Assessment) for analyzing affect of subsidy on MC (Marginal Cost) in electricity distribution sector," Energy, Elsevier, vol. 35(12), pages 4996-5007.
    9. Behrangrad, Mahdi & Sugihara, Hideharu & Funaki, Tsuyoshi, 2012. "Integrating the cold load pickup effect of reserve supplying demand response resource in social cost minimization based system scheduling," Energy, Elsevier, vol. 45(1), pages 1034-1041.
    10. Grimm, Veronika & Orlinskaya, Galina & Schewe, Lars & Schmidt, Martin & Zöttl, Gregor, 2021. "Optimal design of retailer-prosumer electricity tariffs using bilevel optimization," Omega, Elsevier, vol. 102(C).
    11. Suzuki, Kengo & Uchiyama, Yohji, 2010. "Quantifying the risk of an increase in the prices of non-energy products by combining the portfolio and input-output approaches," Energy Policy, Elsevier, vol. 38(10), pages 5867-5877, October.
    12. Kharrati, Saeed & Kazemi, Mostafa & Ehsan, Mehdi, 2016. "Equilibria in the competitive retail electricity market considering uncertainty and risk management," Energy, Elsevier, vol. 106(C), pages 315-328.
    13. Ma, Yilin & Wang, Yudong & Wang, Weizhong & Zhang, Chong, 2023. "Portfolios with return and volatility prediction for the energy stock market," Energy, Elsevier, vol. 270(C).
    14. Min, Daiki & Chung, Jaewoo, 2013. "Evaluation of the long-term power generation mix: The case study of South Korea's energy policy," Energy Policy, Elsevier, vol. 62(C), pages 1544-1552.
    15. Chen, Chen & Liu, Dinghao & Xian, Liang & Pan, Lin & Wang, Lihua & Yang, Min & Quan, Li, 2020. "Best-case scenario robust portfolio for energy stock market," Energy, Elsevier, vol. 213(C).
    16. Jamshidi, Movahed & Kebriaei, Hamed & Sheikh-El-Eslami, Mohammad-Kazem, 2018. "An interval-based stochastic dominance approach for decision making in forward contracts of electricity market," Energy, Elsevier, vol. 158(C), pages 383-395.
    17. Pérez Odeh, Rodrigo & Watts, David & Flores, Yarela, 2018. "Planning in a changing environment: Applications of portfolio optimisation to deal with risk in the electricity sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3808-3823.
    18. Debbie Dupuis, Geneviève Gauthier, and Fréderic Godin, 2016. "Short-term Hedging for an Electricity Retailer," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    19. Gärttner, Johannes & Flath, Christoph M. & Weinhardt, Christof, 2018. "Portfolio and contract design for demand response resources," European Journal of Operational Research, Elsevier, vol. 266(1), pages 340-353.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Woo, C.K. & Zarnikau, J. & Moore, J. & Horowitz, I., 2011. "Wind generation and zonal-market price divergence: Evidence from Texas," Energy Policy, Elsevier, vol. 39(7), pages 3928-3938, July.
    2. Woo, C.K. & Sreedharan, P. & Hargreaves, J. & Kahrl, F. & Wang, J. & Horowitz, I., 2014. "A review of electricity product differentiation," Applied Energy, Elsevier, vol. 114(C), pages 262-272.
    3. Woo, C.K. & Chen, Y. & Olson, A. & Moore, J. & Schlag, N. & Ong, A. & Ho, T., 2017. "Electricity price behavior and carbon trading: New evidence from California," Applied Energy, Elsevier, vol. 204(C), pages 531-543.
    4. Woo, C.K. & Shiu, A. & Liu, Y. & Luo, X. & Zarnikau, J., 2018. "Consumption effects of an electricity decarbonization policy: Hong Kong," Energy, Elsevier, vol. 144(C), pages 887-902.
    5. Cao, K.H. & Qi, H.S. & Tsai, C.H. & Woo, C.K. & Zarnikau, J., 2021. "Energy trading efficiency in the US Midcontinent electricity markets," Applied Energy, Elsevier, vol. 302(C).
    6. Brown, D.P. & Tsai, C.H. & Woo, C.K. & Zarnikau, J. & Zhu, S., 2020. "Residential electricity pricing in Texas's competitive retail market," Energy Economics, Elsevier, vol. 92(C).
    7. Zare, Kazem & Moghaddam, Mohsen Parsa & Sheikh El Eslami, Mohammad Kazem, 2010. "Electricity procurement for large consumers based on Information Gap Decision Theory," Energy Policy, Elsevier, vol. 38(1), pages 234-242, January.
    8. Chi-Keung Woo & Jay Zarnikau & Asher Tishler & Kang Hua Cao, 2022. "Insuring a Small Retail Electric Provider’s Procurement Cost Risk in Texas," Energies, MDPI, vol. 16(1), pages 1-12, December.
    9. Zarnikau, J. & Woo, C.K. & Zhu, S. & Tsai, C.H., 2019. "Market price behavior of wholesale electricity products: Texas," Energy Policy, Elsevier, vol. 125(C), pages 418-428.
    10. Woo, C.K. & Moore, J. & Schneiderman, B. & Ho, T. & Olson, A. & Alagappan, L. & Chawla, K. & Toyama, N. & Zarnikau, J., 2016. "Merit-order effects of renewable energy and price divergence in California’s day-ahead and real-time electricity markets," Energy Policy, Elsevier, vol. 92(C), pages 299-312.
    11. Yu, Dongmin & liu, Huanan & Bresser, Charis, 2018. "Peak load management based on hybrid power generation and demand response," Energy, Elsevier, vol. 163(C), pages 969-985.
    12. Moore, J. & Woo, C.K. & Horii, B. & Price, S. & Olson, A., 2010. "Estimating the option value of a non-firm electricity tariff," Energy, Elsevier, vol. 35(4), pages 1609-1614.
    13. Woo, C.K. & Horowitz, I. & Moore, J. & Pacheco, A., 2011. "The impact of wind generation on the electricity spot-market price level and variance: The Texas experience," Energy Policy, Elsevier, vol. 39(7), pages 3939-3944, July.
    14. H. Qi & C. K. Woo & K. H. Cao & J. Zarnikau & R. Li, 2024. "Price responsiveness of solar and wind capacity demands," Post-Print hal-04597188, HAL.
    15. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    16. Michael W. Brandt & Pedro Santa-Clara & Rossen Valkanov, 2009. "Parametric Portfolio Policies: Exploiting Characteristics in the Cross-Section of Equity Returns," The Review of Financial Studies, Society for Financial Studies, vol. 22(9), pages 3411-3447, September.
    17. Alexander, Gordon J. & Baptista, Alexandre M., 2009. "Stress testing by financial intermediaries: Implications for portfolio selection and asset pricing," Journal of Financial Intermediation, Elsevier, vol. 18(1), pages 65-92, January.
    18. Gao, Jianjun & Xiong, Yan & Li, Duan, 2016. "Dynamic mean-risk portfolio selection with multiple risk measures in continuous-time," European Journal of Operational Research, Elsevier, vol. 249(2), pages 647-656.
    19. P. Kumar & Jyotirmayee Behera & A. K. Bhurjee, 2022. "Solving mean-VaR portfolio selection model with interval-typed random parameter using interval analysis," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 41-77, March.
    20. Chi-Keung Woo & Ira Horowitz & Jay Zarnikau & Jack Moore & Brendan Schneiderman & Tony Ho & Eric Leung, 2016. "What Moves the Ex Post Variable Profit of Natural-Gas-Fired Generation in California?," The Energy Journal, , vol. 37(3), pages 29-57, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:34:y:2009:i:10:p:1523-1529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.