IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v45y2012i1p1034-1041.html
   My bibliography  Save this article

Integrating the cold load pickup effect of reserve supplying demand response resource in social cost minimization based system scheduling

Author

Listed:
  • Behrangrad, Mahdi
  • Sugihara, Hideharu
  • Funaki, Tsuyoshi

Abstract

Expansion of smart grids and aggregator business facilitates the utilization of reserve supplying demand response (RSDR) resources. One of the loads that are increasingly used for reserve provision is air-conditioning load (ACL) that have cold load pickup (CLPU) or “payback” characteristics. With larger scale utilization of RSDR resources, as an effect of increasing DR aggregation business, CLPU characteristics of ACL can affect system optimal operation. Actual utilization time and duration of RSDR resources are probabilistic and affected by system scheduling and contingency occurrence. Therefore the CLPU effect of RSDR resources is probabilistic. This creates extra burden on the system reliability maintenance that should be considered from social cost minimization point of view. This complexity is addressed in this paper by modeling the extra expected load not supplied (ELNS) that the probabilistic CLPU of RSDR can impose on system. Then the aggregated RSDR resources, with CLPU characteristics, are integrated into day-ahead simultaneous system scheduling with the objective function of social cost minimization. This study showed that CLPU can have considerable effects on system scheduling and RSDR effectiveness. The proposed method of this paper proved to be useful for reducing the negative effects of CLPU while using RSDR resources.

Suggested Citation

  • Behrangrad, Mahdi & Sugihara, Hideharu & Funaki, Tsuyoshi, 2012. "Integrating the cold load pickup effect of reserve supplying demand response resource in social cost minimization based system scheduling," Energy, Elsevier, vol. 45(1), pages 1034-1041.
  • Handle: RePEc:eee:energy:v:45:y:2012:i:1:p:1034-1041
    DOI: 10.1016/j.energy.2012.06.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212004914
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.06.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zare, Kazem & Moghaddam, Mohsen Parsa & Sheikh El Eslami, Mohammad Kazem, 2010. "Demand bidding construction for a large consumer through a hybrid IGDT-probability methodology," Energy, Elsevier, vol. 35(7), pages 2999-3007.
    2. Zarnikau, Jay W., 2010. "Demand participation in the restructured Electric Reliability Council of Texas market," Energy, Elsevier, vol. 35(4), pages 1536-1543.
    3. Behrangrad, Mahdi & Sugihara, Hideharu & Funaki, Tsuyoshi, 2011. "Effect of optimal spinning reserve requirement on system pollution emission considering reserve supplying demand response in the electricity market," Applied Energy, Elsevier, vol. 88(7), pages 2548-2558, July.
    4. Shayesteh, E. & Yousefi, A. & Parsa Moghaddam, M., 2010. "A probabilistic risk-based approach for spinning reserve provision using day-ahead demand response program," Energy, Elsevier, vol. 35(5), pages 1908-1915.
    5. Greening, Lorna A., 2010. "Demand response resources: Who is responsible for implementation in a deregulated market?," Energy, Elsevier, vol. 35(4), pages 1518-1525.
    6. Faruqui, A. & Hajos, A. & Hledik, R.M. & Newell, S.A., 2010. "Fostering economic demand response in the Midwest ISO," Energy, Elsevier, vol. 35(4), pages 1544-1552.
    7. Deng, Shi-Jie & Xu, Li, 2009. "Mean-risk efficient portfolio analysis of demand response and supply resources," Energy, Elsevier, vol. 34(10), pages 1523-1529.
    8. Sezgen, Osman & Goldman, C.A. & Krishnarao, P., 2007. "Option value of electricity demand response," Energy, Elsevier, vol. 32(2), pages 108-119.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kirchem, Dana & Lynch, Muireann Á. & Bertsch, Valentin & Casey, Eoin, 2020. "Modelling demand response with process models and energy systems models: Potential applications for wastewater treatment within the energy-water nexus," Applied Energy, Elsevier, vol. 260(C).
    2. Kirchem, Dana & Lynch, Muireann Á & Casey, Eoin & Bertsch, Valentin, 2019. "Demand response within the energy-for-water-nexus: A review," Papers WP637, Economic and Social Research Institute (ESRI).
    3. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olmos, Luis & Ruester, Sophia & Liong, Siok-Jen & Glachant, Jean-Michel, 2011. "Energy efficiency actions related to the rollout of smart meters for small consumers, application to the Austrian system," Energy, Elsevier, vol. 36(7), pages 4396-4409.
    2. Kim, Jin-Ho & Shcherbakova, Anastasia, 2011. "Common failures of demand response," Energy, Elsevier, vol. 36(2), pages 873-880.
    3. Fotouhi Ghazvini, Mohammad Ali & Faria, Pedro & Ramos, Sergio & Morais, Hugo & Vale, Zita, 2015. "Incentive-based demand response programs designed by asset-light retail electricity providers for the day-ahead market," Energy, Elsevier, vol. 82(C), pages 786-799.
    4. Partovi, Farzad & Nikzad, Mehdi & Mozafari, Babak & Ranjbar, Ali Mohamad, 2011. "A stochastic security approach to energy and spinning reserve scheduling considering demand response program," Energy, Elsevier, vol. 36(5), pages 3130-3137.
    5. Liu, Yingqi, 2017. "Demand response and energy efficiency in the capacity resource procurement: Case studies of forward capacity markets in ISO New England, PJM and Great Britain," Energy Policy, Elsevier, vol. 100(C), pages 271-282.
    6. Najafi, M. & Ehsan, M. & Fotuhi-Firuzabad, M. & Akhavein, A. & Afshar, K., 2010. "Optimal reserve capacity allocation with consideration of customer reliability requirements," Energy, Elsevier, vol. 35(9), pages 3883-3890.
    7. Nikzad, Mehdi & Mozafari, Babak & Bashirvand, Mahdi & Solaymani, Soodabeh & Ranjbar, Ali Mohamad, 2012. "Designing time-of-use program based on stochastic security constrained unit commitment considering reliability index," Energy, Elsevier, vol. 41(1), pages 541-548.
    8. Hong, Ying-Yi & Apolinario, Gerard Francesco DG. & Chung, Chen-Nien & Lu, Tai-Ken & Chu, Chia-Chi, 2020. "Effect of Taiwan's energy policy on unit commitment in 2025," Applied Energy, Elsevier, vol. 277(C).
    9. Gomes, A. & Antunes, C. Henggeler & Martinho, J., 2013. "A physically-based model for simulating inverter type air conditioners/heat pumps," Energy, Elsevier, vol. 50(C), pages 110-119.
    10. Alasseri, Rajeev & Tripathi, Ashish & Joji Rao, T. & Sreekanth, K.J., 2017. "A review on implementation strategies for demand side management (DSM) in Kuwait through incentive-based demand response programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 617-635.
    11. Zhou, Kaile & Yang, Shanlin, 2015. "Demand side management in China: The context of China’s power industry reform," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 954-965.
    12. Behrangrad, Mahdi, 2015. "A review of demand side management business models in the electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 270-283.
    13. Feuerriegel, Stefan & Neumann, Dirk, 2016. "Integration scenarios of Demand Response into electricity markets: Load shifting, financial savings and policy implications," Energy Policy, Elsevier, vol. 96(C), pages 231-240.
    14. Moore, J. & Woo, C.K. & Horii, B. & Price, S. & Olson, A., 2010. "Estimating the option value of a non-firm electricity tariff," Energy, Elsevier, vol. 35(4), pages 1609-1614.
    15. Nwulu, Nnamdi I. & Xia, Xiaohua, 2015. "Implementing a model predictive control strategy on the dynamic economic emission dispatch problem with game theory based demand response programs," Energy, Elsevier, vol. 91(C), pages 404-419.
    16. Feng, Zongbao & Wu, Xianguo & Chen, Hongyu & Qin, Yawei & Zhang, Limao & Skibniewski, Miroslaw J., 2022. "An energy performance contracting parameter optimization method based on the response surface method: A case study of a metro in China," Energy, Elsevier, vol. 248(C).
    17. Feuerriegel, Stefan & Neumann, Dirk, 2014. "Measuring the financial impact of demand response for electricity retailers," Energy Policy, Elsevier, vol. 65(C), pages 359-368.
    18. Westner, Günther & Madlener, Reinhard, 2011. "Development of cogeneration in Germany: A mean-variance portfolio analysis of individual technology’s prospects in view of the new regulatory framework," Energy, Elsevier, vol. 36(8), pages 5301-5313.
    19. Biegel, Benjamin & Hansen, Lars Henrik & Stoustrup, Jakob & Andersen, Palle & Harbo, Silas, 2014. "Value of flexible consumption in the electricity markets," Energy, Elsevier, vol. 66(C), pages 354-362.
    20. Bertolini, Marina & D'Alpaos, Chiara & Moretto, Michele, 2018. "Do Smart Grids boost investments in domestic PV plants? Evidence from the Italian electricity market," Energy, Elsevier, vol. 149(C), pages 890-902.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:45:y:2012:i:1:p:1034-1041. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.