IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v54y2006i4p627-642.html
   My bibliography  Save this article

Interruptible Electricity Contracts from an Electricity Retailer's Point of View: Valuation and Optimal Interruption

Author

Listed:
  • Ross Baldick

    (Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, Texas 78712)

  • Sergey Kolos

    (Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712)

  • Stathis Tompaidis

    (Department of Information, Risk and Operations Management, McCombs School of Business, University of Texas at Austin, Austin, Texas 78712)

Abstract

We consider interruptible electricity contracts issued by an electricity retailer that allow for interruptions to electric service in exchange for either an overall reduction in the price of electricity delivered or for financial compensation at the time of interruption. We provide a structural model to determine electricity prices based on stochastic models of supply and demand. We use stochastic dynamic programming to value interruptible contracts from the point of view of an electricity retailer, and describe the optimal interruption strategy. We also demonstrate that structural models can be used to value contracts in competitive markets. Our numerical results indicate that, in a deregulated market, interruptible contracts can help alleviate supply problems associated with spikes of price and demand and that competition between retailers results in lower value and less frequent interruption.

Suggested Citation

  • Ross Baldick & Sergey Kolos & Stathis Tompaidis, 2006. "Interruptible Electricity Contracts from an Electricity Retailer's Point of View: Valuation and Optimal Interruption," Operations Research, INFORMS, vol. 54(4), pages 627-642, August.
  • Handle: RePEc:inm:oropre:v:54:y:2006:i:4:p:627-642
    DOI: 10.1287/opre.1060.0303
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1060.0303
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1060.0303?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chao, Hung-po & Wilson, Robert, 1987. "Priority Service: Pricing, Investment, and Market Organization," American Economic Review, American Economic Association, vol. 77(5), pages 899-916, December.
    2. Helyette Geman & A. Roncoroni, 2006. "Understanding the Fine Structure of Electricity Prices," Post-Print halshs-00144198, HAL.
    3. Sean D. Campbell & Francis X. Diebold, 2005. "Weather Forecasting for Weather Derivatives," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 6-16, March.
    4. John Tschirhart & Frank Jen, 1979. "Behavior of a Monopoly Offering Interruptible Service," Bell Journal of Economics, The RAND Corporation, vol. 10(1), pages 244-258, Spring.
    5. Patrick Jaillet & Ehud I. Ronn & Stathis Tompaidis, 2004. "Valuation of Commodity-Based Swing Options," Management Science, INFORMS, vol. 50(7), pages 909-921, July.
    6. Rajnish Kamat & Shmuel S. Oren, 2002. "Exotic Options for Interruptible Electricity Supply Contracts," Operations Research, INFORMS, vol. 50(5), pages 835-850, October.
    7. Shmuel S. Oren & Stephen A. Smith, 1992. "Design and Management of Curtailable Electricity Service to Reduce Annual Peaks," Operations Research, INFORMS, vol. 40(2), pages 213-228, April.
    8. Emery Troxel, 1949. "Inflation in Price-Regulated Industries," The Journal of Business, University of Chicago Press, vol. 22, pages 1-1.
    9. repec:cto:journl:v:21:y:2002:i:3:p:515-544 is not listed on IDEAS
    10. Hung-po Chao & Shmuel S. Oren & Stephen A. Smith & Robert B. Wilson, 1988. "Priority Service: Market Structure and Competition," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 77-104.
    11. M. T. Barlow, 2002. "A Diffusion Model For Electricity Prices," Mathematical Finance, Wiley Blackwell, vol. 12(4), pages 287-298, October.
    12. Melanie Cao & Jason Wei, 2004. "Weather derivatives valuation and market price of weather risk," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 24(11), pages 1065-1089, November.
    13. Douglas W. Caves & Joseph A. Herriges, 1992. "Optimal Dispatch of Interruptible and Curtailable Service Options," Operations Research, INFORMS, vol. 40(1), pages 104-112, February.
    14. Brown, Gardner, Jr & Johnson, M Bruce, 1969. "Public Utility Pricing and Output under Risk," American Economic Review, American Economic Association, vol. 59(1), pages 119-128, March.
    15. repec:dau:papers:123456789/1433 is not listed on IDEAS
    16. Hélyette Geman & Andrea Roncoroni, 2006. "Understanding the Fine Structure of Electricity Prices," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1225-1262, May.
    17. Maurice W. Lee, 1953. "Hydroelectric Power in the Columbia Basin," The Journal of Business, University of Chicago Press, vol. 26, pages 173-173.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Binbin Li & Yu Tian & Fred Chen & Tongdan Jin, 2017. "Toward net-zero carbon manufacturing operations: an onsite renewables solution," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(3), pages 308-321, March.
    2. Radu Porumb & Petru Postolache & George Serițan & Ramona Vatu & Oana Ceaki, 2013. "Load profiles analysis for electricity market," Computational Methods in Social Sciences (CMSS), "Nicolae Titulescu" University of Bucharest, Faculty of Economic Sciences, vol. 1(2), pages 30-38, December.
    3. Fred Schroyen & Adekola Oyenuga, 2011. "Optimal pricing and capacity choice for a public service under risk of interruption," Journal of Regulatory Economics, Springer, vol. 39(3), pages 252-272, June.
    4. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    5. Tseng, Chung-Li & Zhu, Wei & Dmitriev, Alexandre, 2009. "Variable capacity utilization, ambient temperature shocks and generation asset valuation," Energy Economics, Elsevier, vol. 31(6), pages 888-896, November.
    6. Alasseri, Rajeev & Rao, T. Joji & Sreekanth, K.J., 2020. "Institution of incentive-based demand response programs and prospective policy assessments for a subsidized electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    7. Albert Banal-Estañol & Augusto Rupérez Micola, 2009. "Composition of Electricity Generation Portfolios, Pivotal Dynamics, and Market Prices," Management Science, INFORMS, vol. 55(11), pages 1813-1831, November.
    8. Kovacevic, Raimund M. & Pflug, Georg Ch., 2014. "Electricity swing option pricing by stochastic bilevel optimization: A survey and new approaches," European Journal of Operational Research, Elsevier, vol. 237(2), pages 389-403.
    9. Ali Fattahi & Sriram Dasu & Reza Ahmadi, 2023. "Peak-Load Energy Management by Direct Load Control Contracts," Management Science, INFORMS, vol. 69(5), pages 2788-2813, May.
    10. Gautam Gowrisankaran & Stanley S. Reynolds & Mario Samano, 2016. "Intermittency and the Value of Renewable Energy," Journal of Political Economy, University of Chicago Press, vol. 124(4), pages 1187-1234.
    11. Gila E. Fruchter & Hussein Naseraldin, 2021. "Coordinating Carbon Emissions via Production Quantities: A Differential Game Approach," Games, MDPI, vol. 12(1), pages 1-16, February.
    12. Alasseri, Rajeev & Tripathi, Ashish & Joji Rao, T. & Sreekanth, K.J., 2017. "A review on implementation strategies for demand side management (DSM) in Kuwait through incentive-based demand response programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 617-635.
    13. Çağrı Latifoğlu & Pietro Belotti & Lawrence V. Snyder, 2013. "Models for production planning under power interruptions," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(5), pages 413-431, August.
    14. Deng, Shi-Jie & Xu, Li, 2009. "Mean-risk efficient portfolio analysis of demand response and supply resources," Energy, Elsevier, vol. 34(10), pages 1523-1529.
    15. Albanese, Claudio & Lo, Harry & Tompaidis, Stathis, 2012. "A numerical algorithm for pricing electricity derivatives for jump-diffusion processes based on continuous time lattices," European Journal of Operational Research, Elsevier, vol. 222(2), pages 361-368.
    16. Wang, Tian & Deng, Shiming, 2019. "Multi-Period energy procurement policies for smart-grid communities with deferrable demand and supplementary uncertain power supplies," Omega, Elsevier, vol. 89(C), pages 212-226.
    17. Vishwakant Malladi & Rafael Mendoza-Arriaga & Stathis Tompaidis, 2020. "Modeling Dependent Outages of Electric Power Plants," Operations Research, INFORMS, vol. 68(1), pages 1-15, January.
    18. Ghosh, Ranjan & Goyal, Yugank & Rommel, Jens & Sagebiel, Julian, 2017. "Are small firms willing to pay for improved power supply? Evidence from a contingent valuation study in India," Energy Policy, Elsevier, vol. 109(C), pages 659-665.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fred Espen Benth & Jūratė Šaltytė Benth & Steen Koekebakker, 2008. "Stochastic Modeling of Electricity and Related Markets," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 6811, August.
    2. Çağrı Latifoğlu & Pietro Belotti & Lawrence V. Snyder, 2013. "Models for production planning under power interruptions," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(5), pages 413-431, August.
    3. Marcelo G. Figueroa, 2006. "Pricing Multiple Interruptible-Swing Contracts," Birkbeck Working Papers in Economics and Finance 0606, Birkbeck, Department of Economics, Mathematics & Statistics.
    4. Michel Culot & Valérie Goffin & Steve Lawford & Sébastien de Meten & Yves Smeers, 2013. "Practical stochastic modelling of electricity prices," Post-Print hal-01021603, HAL.
    5. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, October.
    6. Hain, Martin & Kargus, Tobias & Schermeyer, Hans & Uhrig-Homburg, Marliese & Fichtner, Wolf, 2022. "An electricity price modeling framework for renewable-dominant markets," Working Paper Series in Production and Energy 66, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    7. Timothy Christensen & Stan Hurn & Kenneth Lindsay, 2009. "It Never Rains but it Pours: Modeling the Persistence of Spikes in Electricity Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-48.
    8. Albanese, Claudio & Lo, Harry & Tompaidis, Stathis, 2012. "A numerical algorithm for pricing electricity derivatives for jump-diffusion processes based on continuous time lattices," European Journal of Operational Research, Elsevier, vol. 222(2), pages 361-368.
    9. Fanone, Enzo & Gamba, Andrea & Prokopczuk, Marcel, 2013. "The case of negative day-ahead electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 22-34.
    10. Serra, Pablo & Fierro, Gabriel, 1997. "Outage costs in Chilean industry," Energy Economics, Elsevier, vol. 19(4), pages 417-434, October.
    11. Serra, Pablo J., 1997. "Energy pricing under uncertain supply," Energy Economics, Elsevier, vol. 19(2), pages 209-223, May.
    12. Le Pen, Yannick & Sévi, Benoît, 2010. "Volatility transmission and volatility impulse response functions in European electricity forward markets," Energy Economics, Elsevier, vol. 32(4), pages 758-770, July.
    13. Janczura, Joanna & Trück, Stefan & Weron, Rafał & Wolff, Rodney C., 2013. "Identifying spikes and seasonal components in electricity spot price data: A guide to robust modeling," Energy Economics, Elsevier, vol. 38(C), pages 96-110.
    14. Adam Clements & Joanne Fuller & Stan Hurn, 2013. "Semi-parametric Forecasting of Spikes in Electricity Prices," The Economic Record, The Economic Society of Australia, vol. 89(287), pages 508-521, December.
    15. Niu, Shilei & Insley, Margaret, 2016. "An options pricing approach to ramping rate restrictions at hydro power plants," Journal of Economic Dynamics and Control, Elsevier, vol. 63(C), pages 25-52.
    16. Hess, Markus, 2017. "Modeling positive electricity prices with arithmetic jump-diffusions," Energy Economics, Elsevier, vol. 67(C), pages 496-507.
    17. Rubin, Ofir David, 2010. "Equilibrium pricing in electricity markets with wind power," ISU General Staff Papers 201001010800002361, Iowa State University, Department of Economics.
    18. Cartea, Álvaro & González-Pedraz, Carlos, 2012. "How much should we pay for interconnecting electricity markets? A real options approach," Energy Economics, Elsevier, vol. 34(1), pages 14-30.
    19. N. K. Nomikos & O. Soldatos, 2008. "Using Affine Jump Diffusion Models for Modelling and Pricing Electricity Derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(1), pages 41-71.
    20. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0601, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:54:y:2006:i:4:p:627-642. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.